Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/94045
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorSchool of Hotel and Tourism Managementen_US
dc.creatorHu, Men_US
dc.creatorLi, Hen_US
dc.creatorSong, Hen_US
dc.creatorLi, Xen_US
dc.creatorLaw, Ren_US
dc.date.accessioned2022-08-11T01:06:37Z-
dc.date.available2022-08-11T01:06:37Z-
dc.identifier.issn0261-5177en_US
dc.identifier.urihttp://hdl.handle.net/10397/94045-
dc.language.isoenen_US
dc.publisherPergamon Pressen_US
dc.rights© 2022 Elsevier Ltd. All rights reserved.en_US
dc.rights© 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.rightsThe following publication Hu, M., Li, H., Song, H., Li, X., & Law, R. (2022). Tourism demand forecasting using tourist-generated online review data. Tourism Management, 90, 104490 is available at https://doi.org/10.1016/j.tourman.2022.104490.en_US
dc.subjectHong Kongen_US
dc.subjectMIDASen_US
dc.subjectOnline reviewen_US
dc.subjectSocial media dataen_US
dc.subjectTourism demand forecastingen_US
dc.titleTourism demand forecasting using tourist-generated online review dataen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume90en_US
dc.identifier.doi10.1016/j.tourman.2022.104490en_US
dcterms.abstractThis study aims to forecast international tourist arrivals to Hong Kong from seven English-speaking countries. A new direction in tourism demand modeling and forecasting is presented by incorporating tourist-generated online review data related to tourist attractions, hotels, and shopping markets into the destination forecasting system. The main empirical findings indicate that tourism demand forecasting based on tourists’ online review data can substantially improve the forecasting performance of tourism demand models; specifically, mixed data sampling (MIDAS) models outperformed competing models when high-frequency online review data were included in traditional time-series models.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationTourism management, June 2022, v. 90, 104490en_US
dcterms.isPartOfTourism managementen_US
dcterms.issued2022-06-
dc.identifier.scopus2-s2.0-85122628099-
dc.identifier.eissn1879-3193en_US
dc.identifier.artn104490en_US
dc.description.validate202208 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera1520-
dc.identifier.SubFormID45321-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of Chinaen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Hu_Tourism_Forecasting_Tourist-Generated.pdfPre-Published version3.1 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

255
Last Week
5
Last month
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

116
Citations as of Nov 21, 2025

WEB OF SCIENCETM
Citations

98
Citations as of Nov 27, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.