Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/94036
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineeringen_US
dc.creatorLiu, Len_US
dc.creatorZhang, Yen_US
dc.creatorLi, Jen_US
dc.creatorFan, Men_US
dc.creatorWang, Xen_US
dc.creatorWu, Gen_US
dc.creatorYang, Zen_US
dc.creatorLuan, Jen_US
dc.creatorJiao, Zen_US
dc.creatorLiu, CTen_US
dc.creatorLiaw, PKen_US
dc.creatorZhang, Zen_US
dc.date.accessioned2022-08-11T01:06:35Z-
dc.date.available2022-08-11T01:06:35Z-
dc.identifier.issn0749-6419en_US
dc.identifier.urihttp://hdl.handle.net/10397/94036-
dc.language.isoenen_US
dc.publisherPergamon Pressen_US
dc.rights© 2022 Elsevier Ltd. All rights reserved.en_US
dc.rights© 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.rightsThe following publication Liu, L., Zhang, Y., Li, J., Fan, M., Wang, X., Wu, G., Yang, Z., Luan, J., Jiao, Z., Liu, C. T., Liaw, P. K., & Zhang, Z. (2022). Enhanced strength-ductility synergy via novel bifunctional nano-precipitates in a high-entropy alloy. International Journal of Plasticity, 153, 103235 is available at https://dx.doi.org/10.1016/j.ijplas.2022.103235..en_US
dc.subjectHigh-entropy alloysen_US
dc.subjectMechanical propertiesen_US
dc.subjectNano-precipitatesen_US
dc.subjectPrecipitation strengtheningen_US
dc.subjectStacking faulten_US
dc.titleEnhanced strength-ductility synergy via novel bifunctional nano-precipitates in a high-entropy alloyen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume153en_US
dc.identifier.doi10.1016/j.ijplas.2022.103235en_US
dcterms.abstractHigh-entropy alloys (HEAs) with a single-phased face-centered-cubic structure possess excellent plasticity but generally low strength. Precipitation strengthening is one of the most promising methods to improve the strength of alloys. However, plagued by a nerve-wracking fact that strength-ductility trade-off frequently limits the improvement of alloy properties. To overcome this problem, a new Ni35(CoFe)55V5Nb5 HEA with an excellent strength and ductility synergy was developed by introducing a novel bifunctional L12-Ni3Nb nano-precipitate. This HEA exhibits a high yield strength of 855 MPa, ultimate tensile strength of 1,302 MPa and marvelous elongation of ∼ 50%. First-principles calculations show that the (Ni24Co18Fe6)3(Nb10V4Fe2) nano-precipitate with a L12 structure possesses lower formation energy than that with D022 structure. The novel nano-precipitates provide two-fold functions. On the one hand, L12-(Ni24Co18Fe6)3(Nb10V4Fe2) nano-precipitates have a high anti-phase boundary energy, contributing to a significant increment in the yield strength through precipitation strengthening. More importantly, the precipitation of the precipitates lowers the stacking fault energy (SFE) of the alloy matrix, contributing to the excellent work-hardening ability and large plasticity through activating the continuous formation of SF networks and Lomer-Cottrell locks during deformation. The strategy to introduce the novel bifunctional nano-precipitates paves a new way to enhance the strength-ductility synergy of alloys.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationInternational journal of plasticity, June 2022, v. 153, 103235en_US
dcterms.isPartOfInternational journal of plasticityen_US
dcterms.issued2022-06-
dc.identifier.scopus2-s2.0-85128454861-
dc.identifier.artn103235en_US
dc.description.validate202208 bcchen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera1518-
dc.identifier.SubFormID45311-
dc.description.fundingSourceSelf-fundeden_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Liu_Enhanced_Strength-ductility_Synergy.pdfPre-Published version2.07 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

148
Last Week
1
Last month
Citations as of Nov 10, 2025

Downloads

227
Citations as of Nov 10, 2025

SCOPUSTM   
Citations

155
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

117
Citations as of May 15, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.