Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/93919
| Title: | Nonparametric inference for right-censored data using smoothing splines | Authors: | Hao, M Lin, Y Zhao, X |
Issue Date: | Jan-2020 | Source: | Statistica sinica, Jan. 2020, v. 30, no. 1, p. 153-173 | Abstract: | This study introduces a penalized nonparametric maximum likelihood estimation of the log-hazard function for analyzing right-censored data. Smoothing splines are employed for a smooth estimation. Our main discovery is a functional Bahadur representation, which serves as a key tool for nonparametric inferences of an unknown function. The asymptotic properties of the resulting smoothing-spline estimator of the unknown log-hazard function are established under regularity conditions. Moreover, we provide a local confidence interval for this function, as well as local and global likelihood ratio tests. We also discuss the asymptotic efficiency of the estimator. The theoretical results are validated using extensive simulation studies. Lastly, we demonstrate the estimator by applying it to a real data set. | Keywords: | Functional Bahadur representation Likelihood ratio test Nonparametric inference Penalized likelihood Right-censored data Smoothing splines |
Publisher: | Academia Sinica, Institute of Statistical Science | Journal: | Statistica sinica | ISSN: | 1017-0405 | DOI: | 10.5705/ss.202017.0357 | Rights: | Posted with permission of the publisher. |
| Appears in Collections: | Journal/Magazine Article |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| A30n18.pdf | 439.71 kB | Adobe PDF | View/Open |
Page views
119
Last Week
1
1
Last month
Citations as of Nov 10, 2025
Downloads
97
Citations as of Nov 10, 2025
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.



