Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/93886
| DC Field | Value | Language |
|---|---|---|
| dc.contributor | Department of Applied Mathematics | en_US |
| dc.creator | Xiong, J | en_US |
| dc.creator | Xu, ZQ | en_US |
| dc.creator | Zheng, J | en_US |
| dc.date.accessioned | 2022-08-03T01:24:05Z | - |
| dc.date.available | 2022-08-03T01:24:05Z | - |
| dc.identifier.issn | 1469-7688 | en_US |
| dc.identifier.uri | http://hdl.handle.net/10397/93886 | - |
| dc.language.iso | en | en_US |
| dc.publisher | Routledge, Taylor & Francis Group | en_US |
| dc.rights | © 2021 Informa UK Limited, trading as Taylor & Francis Group | en_US |
| dc.rights | This is an Accepted Manuscript of an article published by Taylor & Francis in Quantitative Finance on 08 Apr 2021 (published online), available at: http://www.tandfonline.com/10.1080/14697688.2021.1889650 | en_US |
| dc.subject | Drift uncertainty | en_US |
| dc.subject | Malliavin calculus | en_US |
| dc.subject | Mean–variance portfolio selection | en_US |
| dc.subject | Partial information | en_US |
| dc.title | Mean-variance portfolio selection under partial information with drift uncertainty | en_US |
| dc.type | Journal/Magazine Article | en_US |
| dc.identifier.spage | 1461 | en_US |
| dc.identifier.epage | 1473 | en_US |
| dc.identifier.volume | 21 | en_US |
| dc.identifier.issue | 9 | en_US |
| dc.identifier.doi | 10.1080/14697688.2021.1889650 | en_US |
| dcterms.abstract | In this paper, we study the mean–variance portfolio selection problem under partial information with drift uncertainty. First we show that the market model is complete even in this case while the information is not complete and the drift is uncertain. Then, the optimal strategy based on partial information is derived, which reduces to solving a related backward stochastic differential equation (BSDE). Finally, we propose an efficient numerical scheme to approximate the optimal portfolio that is the solution of the BSDE mentioned above. Malliavin calculus and the particle representation play important roles in this scheme. | en_US |
| dcterms.accessRights | open access | en_US |
| dcterms.bibliographicCitation | Quantitative finance, 2021, v. 21, no. 9, p. 1461-1473 | en_US |
| dcterms.isPartOf | Quantitative finance | en_US |
| dcterms.issued | 2021 | - |
| dc.identifier.scopus | 2-s2.0-85104027580 | - |
| dc.identifier.eissn | 1469-7696 | en_US |
| dc.description.validate | 202208 bcfc | en_US |
| dc.description.oa | Accepted Manuscript | en_US |
| dc.identifier.FolderNumber | AMA-0096 | - |
| dc.description.fundingSource | RGC | en_US |
| dc.description.fundingSource | Others | en_US |
| dc.description.fundingText | NSFC | en_US |
| dc.description.pubStatus | Published | en_US |
| dc.identifier.OPUS | 52871477 | - |
| dc.description.oaCategory | Green (AAM) | en_US |
| Appears in Collections: | Journal/Magazine Article | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| Xu_Mean–Variance_Portfolio_Selection.pdf | Pre-Published version | 425.69 kB | Adobe PDF | View/Open |
Page views
73
Last Week
1
1
Last month
Citations as of Apr 14, 2025
Downloads
89
Citations as of Apr 14, 2025
SCOPUSTM
Citations
9
Citations as of Dec 19, 2025
WEB OF SCIENCETM
Citations
8
Citations as of Oct 10, 2024
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.



