Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/93876
| DC Field | Value | Language |
|---|---|---|
| dc.contributor | Department of Applied Mathematics | en_US |
| dc.creator | Li, B | en_US |
| dc.date.accessioned | 2022-08-03T01:24:03Z | - |
| dc.date.available | 2022-08-03T01:24:03Z | - |
| dc.identifier.issn | 0029-599X | en_US |
| dc.identifier.uri | http://hdl.handle.net/10397/93876 | - |
| dc.language.iso | en | en_US |
| dc.publisher | Springer | en_US |
| dc.rights | © The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021 | en_US |
| dc.rights | This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use (https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms), but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s00211-021-01172-0 | en_US |
| dc.title | A bounded numerical solution with a small mesh size implies existence of a smooth solution to the Navier–Stokes equations | en_US |
| dc.type | Journal/Magazine Article | en_US |
| dc.identifier.spage | 283 | en_US |
| dc.identifier.epage | 304 | en_US |
| dc.identifier.volume | 147 | en_US |
| dc.identifier.issue | 2 | en_US |
| dc.identifier.doi | 10.1007/s00211-021-01172-0 | en_US |
| dcterms.abstract | We prove that for a given smooth initial value, if a finite element solution of the three-dimensional Navier–Stokes equations is bounded in a certain norm with a relatively small mesh size, then the solution of the Navier–Stokes equations with this given initial value must be smooth and unique, and is successfully approximated by the numerical solution. | en_US |
| dcterms.accessRights | open access | en_US |
| dcterms.bibliographicCitation | Numerische mathematik, Feb. 2021, v. 147, no. 2, p. 283-304 | en_US |
| dcterms.isPartOf | Numerische mathematik | en_US |
| dcterms.issued | 2021-02 | - |
| dc.identifier.scopus | 2-s2.0-85099821792 | - |
| dc.identifier.eissn | 0945-3245 | en_US |
| dc.description.validate | 202208 bcfc | en_US |
| dc.description.oa | Accepted Manuscript | en_US |
| dc.identifier.FolderNumber | AMA-0076 | - |
| dc.description.fundingSource | RGC | en_US |
| dc.description.pubStatus | Published | en_US |
| dc.identifier.OPUS | 54045392 | - |
| dc.description.oaCategory | Green (AAM) | en_US |
| Appears in Collections: | Journal/Magazine Article | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| Li_Bounded_Numerical_Solution.pdf | Pre-Published version | 886.49 kB | Adobe PDF | View/Open |
Page views
67
Last Week
1
1
Last month
Citations as of Apr 14, 2025
Downloads
52
Citations as of Apr 14, 2025
SCOPUSTM
Citations
6
Citations as of Sep 12, 2025
WEB OF SCIENCETM
Citations
6
Citations as of Oct 10, 2024
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.



