Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/93856
| DC Field | Value | Language |
|---|---|---|
| dc.contributor | Department of Applied Mathematics | en_US |
| dc.creator | Liang, L | en_US |
| dc.creator | Sun, D | en_US |
| dc.creator | Toh, KC | en_US |
| dc.date.accessioned | 2022-08-03T01:23:57Z | - |
| dc.date.available | 2022-08-03T01:23:57Z | - |
| dc.identifier.issn | 1052-6234 | en_US |
| dc.identifier.uri | http://hdl.handle.net/10397/93856 | - |
| dc.language.iso | en | en_US |
| dc.publisher | Society for Industrial and Applied Mathematics | en_US |
| dc.rights | © 2021 Society for Industrial and Applied Mathematics | en_US |
| dc.rights | The following publication Liang, L., Sun, D., & Toh, K. C. (2021). An Inexact Augmented Lagrangian Method for Second-Order Cone Programming with Applications. SIAM Journal on Optimization, 31(3), 1748-1773 is available at https://doi.org/10.1137/20M1374262 | en_US |
| dc.subject | Augmented Lagrangian method | en_US |
| dc.subject | Minimal enclosing ball problem | en_US |
| dc.subject | Quadratic growth condition | en_US |
| dc.subject | Second-order cone programming | en_US |
| dc.subject | Square-root Lasso problem | en_US |
| dc.subject | Trust-region subproblem | en_US |
| dc.title | An inexact augmented Lagrangian method for second-order cone programming with applications | en_US |
| dc.type | Journal/Magazine Article | en_US |
| dc.identifier.spage | 1748 | en_US |
| dc.identifier.epage | 1773 | en_US |
| dc.identifier.volume | 31 | en_US |
| dc.identifier.issue | 3 | en_US |
| dc.identifier.doi | 10.1137/20M1374262 | en_US |
| dcterms.abstract | In this paper, we adopt the augmented Lagrangian method (ALM) to solve convex quadratic second-order cone programming problems (SOCPs). Fruitful results on the efficiency of the ALM have been established in the literature. Recently, it has been shown in [Cui, Sun, and Toh, Math. Program., 178 (2019), pp. 381-415] that if the quadratic growth condition holds at an optimal solution for the dual problem, then the KKT residual converges to zero R-superlinearly when the ALM is applied to the primal problem. Moreover, Cui, Ding, and Zhao [SIAM J. Optim., 27 (2017), pp. 2332-2355] provided sufficient conditions for the quadratic growth condition to hold under the metric subregularity and bounded linear regularity conditions for solving composite matrix optimization problems involving spectral functions. Here, we adopt these recent ideas to analyze the convergence properties of the ALM when applied to SOCPs. To the best of our knowledge, no similar work has been done for SOCPs so far. In our paper, we first provide sufficient conditions to ensure the quadratic growth condition for SOCPs. With these elegant theoretical guarantees, we then design an SOCP solver and apply it to solve various classes of SOCPs, such as minimal enclosing ball problems, classical trust-region subproblems, square-root Lasso problems, and DIMACS Challenge problems. Numerical results show that the proposed ALM based solver is efficient and robust compared to the existing highly developed solvers, such as Mosek and SDPT3. | en_US |
| dcterms.accessRights | open access | en_US |
| dcterms.bibliographicCitation | SIAM journal on optimization, 2021, v. 31, no. 3, p. 1748-1773 | en_US |
| dcterms.isPartOf | SIAM journal on optimization | en_US |
| dcterms.issued | 2021 | - |
| dc.identifier.scopus | 2-s2.0-85110320379 | - |
| dc.identifier.eissn | 1095-7189 | en_US |
| dc.description.validate | 202208 bcfc | en_US |
| dc.description.oa | Version of Record | en_US |
| dc.identifier.FolderNumber | AMA-0029 | - |
| dc.description.fundingSource | RGC | en_US |
| dc.description.pubStatus | Published | en_US |
| dc.identifier.OPUS | 54170553 | - |
| dc.description.oaCategory | VoR allowed | en_US |
| Appears in Collections: | Journal/Magazine Article | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| 20m1374262.pdf | 503.78 kB | Adobe PDF | View/Open |
Page views
131
Last Week
7
7
Last month
Citations as of Nov 10, 2025
Downloads
166
Citations as of Nov 10, 2025
SCOPUSTM
Citations
9
Citations as of Dec 19, 2025
WEB OF SCIENCETM
Citations
8
Citations as of Dec 18, 2025
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.



