Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/93512
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Land Surveying and Geo-Informaticsen_US
dc.creatorShi, Wen_US
dc.creatorZhang, Men_US
dc.date.accessioned2022-07-08T01:02:52Z-
dc.date.available2022-07-08T01:02:52Z-
dc.identifier.issn1001-1595en_US
dc.identifier.urihttp://hdl.handle.net/10397/93512-
dc.language.isozhen_US
dc.publisher科学出版社en_US
dc.rights© 2021 中国学术期刊电子杂志出版社。本内容的使用仅限于教育、科研之目的。en_US
dc.rights© 2021 China Academic Journal Electronic Publishing House. It is to be used strictly for educational and research use.en_US
dc.subjectArtificial intelligenceen_US
dc.subjectObject recognitionen_US
dc.subjectReliabilityen_US
dc.subjectRemote sensingen_US
dc.title人工智能用于遥感目标可靠性识别 : 总体框架设计、现状分析及展望en_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage1049en_US
dc.identifier.epage1058en_US
dc.identifier.volume50en_US
dc.identifier.issue8en_US
dc.identifier.doi10.11947/j.AGCS.2021.20210095en_US
dcterms.abstract可靠性是遥感监测的重要研究方向之一。人工智能技术促进了遥感目标识别技术的快速发展,但是 其不可解释性带来了新的问题。本文依据空间数据的可靠性理论和人工智能基础理论,首先,提出了智能化 遥感目标可靠性识别思想及总体框架;然后,阐述了影响可靠性的因素分析、可靠性提升方法、可靠性评估方 法和可靠性过程控制等核心研究方向;最后,展望了人工智能用于遥感目标可靠性识别方法的未来发展方向。en_US
dcterms.abstractReliability is one of the important features in remotely sensed data-based land use monitoring. Artificial intelligence (AI) technology promotes the rapid development of object recognition from remotely sensed data. However, the un-explainability in such image processing causes reliability problems. Based on the reliability theory and the basic theory of AI, this paper first presents the idea and the overall framework of intelligent and reliable object recognition. Second, the core research directions, including analysis of influencing factors, improvement methods, evaluation methods, and process control for reliability are sequentially introduced. Finally, the future development trend of AI for reliable object recognition from remotely sensed data is outlined.en_US
dcterms.accessRightsopen accessen_US
dcterms.alternativeArtificial intelligence for reliable object recognition from remotely sensed data : overall framework design, review and prospecten_US
dcterms.bibliographicCitation測繪学报 (Acta geodetica et cartographica sinica), Aug. 2021, v. 50, no. 8, p. 1049-1058en_US
dcterms.isPartOf測繪学报 (Acta geodetica et cartographica sinica)en_US
dcterms.issued2021-08-
dc.identifier.scopus2-s2.0-85113740250-
dc.description.validate202207 bcfcen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberLSGI-0018-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThe Hong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS55472677-
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
人工智能用於遙感目標可靠性.pdf1.3 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

102
Last Week
0
Last month
Citations as of Jan 5, 2025

Downloads

414
Citations as of Jan 5, 2025

SCOPUSTM   
Citations

7
Citations as of Jan 9, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.