Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/93512
DC Field | Value | Language |
---|---|---|
dc.contributor | Department of Land Surveying and Geo-Informatics | en_US |
dc.creator | Shi, W | en_US |
dc.creator | Zhang, M | en_US |
dc.date.accessioned | 2022-07-08T01:02:52Z | - |
dc.date.available | 2022-07-08T01:02:52Z | - |
dc.identifier.issn | 1001-1595 | en_US |
dc.identifier.uri | http://hdl.handle.net/10397/93512 | - |
dc.language.iso | zh | en_US |
dc.publisher | 科学出版社 | en_US |
dc.rights | © 2021 中国学术期刊电子杂志出版社。本内容的使用仅限于教育、科研之目的。 | en_US |
dc.rights | © 2021 China Academic Journal Electronic Publishing House. It is to be used strictly for educational and research use. | en_US |
dc.subject | Artificial intelligence | en_US |
dc.subject | Object recognition | en_US |
dc.subject | Reliability | en_US |
dc.subject | Remote sensing | en_US |
dc.title | 人工智能用于遥感目标可靠性识别 : 总体框架设计、现状分析及展望 | en_US |
dc.type | Journal/Magazine Article | en_US |
dc.identifier.spage | 1049 | en_US |
dc.identifier.epage | 1058 | en_US |
dc.identifier.volume | 50 | en_US |
dc.identifier.issue | 8 | en_US |
dc.identifier.doi | 10.11947/j.AGCS.2021.20210095 | en_US |
dcterms.abstract | 可靠性是遥感监测的重要研究方向之一。人工智能技术促进了遥感目标识别技术的快速发展,但是 其不可解释性带来了新的问题。本文依据空间数据的可靠性理论和人工智能基础理论,首先,提出了智能化 遥感目标可靠性识别思想及总体框架;然后,阐述了影响可靠性的因素分析、可靠性提升方法、可靠性评估方 法和可靠性过程控制等核心研究方向;最后,展望了人工智能用于遥感目标可靠性识别方法的未来发展方向。 | en_US |
dcterms.abstract | Reliability is one of the important features in remotely sensed data-based land use monitoring. Artificial intelligence (AI) technology promotes the rapid development of object recognition from remotely sensed data. However, the un-explainability in such image processing causes reliability problems. Based on the reliability theory and the basic theory of AI, this paper first presents the idea and the overall framework of intelligent and reliable object recognition. Second, the core research directions, including analysis of influencing factors, improvement methods, evaluation methods, and process control for reliability are sequentially introduced. Finally, the future development trend of AI for reliable object recognition from remotely sensed data is outlined. | en_US |
dcterms.accessRights | open access | en_US |
dcterms.alternative | Artificial intelligence for reliable object recognition from remotely sensed data : overall framework design, review and prospect | en_US |
dcterms.bibliographicCitation | 測繪学报 (Acta geodetica et cartographica sinica), Aug. 2021, v. 50, no. 8, p. 1049-1058 | en_US |
dcterms.isPartOf | 測繪学报 (Acta geodetica et cartographica sinica) | en_US |
dcterms.issued | 2021-08 | - |
dc.identifier.scopus | 2-s2.0-85113740250 | - |
dc.description.validate | 202207 bcfc | en_US |
dc.description.oa | Version of Record | en_US |
dc.identifier.FolderNumber | LSGI-0018 | - |
dc.description.fundingSource | Others | en_US |
dc.description.fundingText | The Hong Kong Polytechnic University | en_US |
dc.description.pubStatus | Published | en_US |
dc.identifier.OPUS | 55472677 | - |
dc.description.oaCategory | VoR allowed | en_US |
Appears in Collections: | Journal/Magazine Article |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
人工智能用於遙感目標可靠性.pdf | 1.3 MB | Adobe PDF | View/Open |
Page views
102
Last Week
0
0
Last month
Citations as of Jan 5, 2025
Downloads
414
Citations as of Jan 5, 2025
SCOPUSTM
Citations
7
Citations as of Jan 9, 2025
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.