Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/93098
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorSchool of Hotel and Tourism Managementen_US
dc.creatorHu, Men_US
dc.creatorQiu, RTRen_US
dc.creatorWu, DCen_US
dc.creatorSong, Hen_US
dc.date.accessioned2022-06-09T06:13:47Z-
dc.date.available2022-06-09T06:13:47Z-
dc.identifier.issn0261-5177en_US
dc.identifier.urihttp://hdl.handle.net/10397/93098-
dc.language.isoenen_US
dc.publisherPergamon Pressen_US
dc.rights© 2020 Elsevier Ltd. All rights reserved.en_US
dc.rights© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.rightsThe following publication Hu, M., Qiu, R. T. R., Wu, D. C., & Song, H. (2021). Hierarchical pattern recognition for tourism demand forecasting. Tourism Management, 84, 104263 is available at https://dx.doi.org/10.1016/j.tourman.2020.104263.en_US
dc.subjectCalendar patternen_US
dc.subjectDaily attraction visitsen_US
dc.subjectFloating holidaysen_US
dc.subjectHierarchical pattern recognitionen_US
dc.subjectTourism demand forecastingen_US
dc.subjectTourism demand patternen_US
dc.titleHierarchical pattern recognition for tourism demand forecastingen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume84en_US
dc.identifier.doi10.1016/j.tourman.2020.104263en_US
dcterms.abstractThis study proposes a hierarchical pattern recognition method for tourism demand forecasting. The hierarchy consists of three tiers: the first tier recognizes the calendar pattern of tourism demand, identifying work days and holidays and integrating “floating holidays.” The second tier recognizes the tourism demand pattern in the data stream for different calendar pattern groups. The third tier generates forecasts of future tourism demand. Evidence from daily tourist visits to three attractions in China shows that the proposed method is effective in forecasting daily tourism demand. Moreover, the treatment of “floating holidays” turns out to be more effective and flexible than the commonly adopted dummy variable approach.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationTourism management, June 2021, v. 84, 104263en_US
dcterms.isPartOfTourism managementen_US
dcterms.issued2021-06-
dc.identifier.scopus2-s2.0-85097662061-
dc.identifier.eissn1879-3193en_US
dc.identifier.artn104263en_US
dc.description.validate202206 bckwen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberSHTM-0050-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China; The Hong Kong Scholars Program; Start-up Research Grant of University of Macau; Guangxi Development Strategy Instituteen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS49919598-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Hu_Hierarchical_Pattern_Recognition.pdfPre-Published version1.76 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

139
Last Week
1
Last month
Citations as of Nov 10, 2025

Downloads

195
Citations as of Nov 10, 2025

SCOPUSTM   
Citations

68
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

52
Citations as of Feb 6, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.