Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/93089
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorSchool of Hotel and Tourism Managementen_US
dc.creatorPark, Een_US
dc.creatorPark, Jen_US
dc.creatorHu, Men_US
dc.date.accessioned2022-06-09T06:13:45Z-
dc.date.available2022-06-09T06:13:45Z-
dc.identifier.issn0160-7383en_US
dc.identifier.urihttp://hdl.handle.net/10397/93089-
dc.language.isoenen_US
dc.publisherPergamon Pressen_US
dc.rights© 2021 Elsevier Ltd. All rights reserved.en_US
dc.rights© 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.rightsThe following publication Park, E., Park, J., & Hu, M. (2021). Tourism demand forecasting with online news data mining. Annals of Tourism Research, 90, 103273 is available at https://dx.doi.org/10.1016/j.annals.2021.103273.en_US
dc.subjectHong Kongen_US
dc.subjectNews discourseen_US
dc.subjectTopic modelingen_US
dc.subjectTourism demand forecastingen_US
dc.titleTourism demand forecasting with online news data miningen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume90en_US
dc.identifier.doi10.1016/j.annals.2021.103273en_US
dcterms.abstractThis study empirically tests the role of news discourse in forecasting tourist arrivals by examining Hong Kong. It employs structural topic modeling to identify key topics and their meanings related to tourism demand. The impact of the extracted news topics on tourist arrivals is then examined to forecast tourism demand using the seasonal autoregressive integrated moving average with the selected news topic variables method. This study confirms that including news data significantly improves forecasting performance. Our forecasting model using news topics also outperformed the others when the destination was experiencing social unrest at the local level. These findings contribute to tourism demand forecasting research by incorporating discourse analysis and can help tourism destinations address various externalities related to news media.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationAnnals of tourism research, Sept. 2021, v. 90, 103273en_US
dcterms.isPartOfAnnals of tourism researchen_US
dcterms.issued2021-09-
dc.identifier.scopus2-s2.0-85110362907-
dc.identifier.eissn1873-7722en_US
dc.identifier.artn103273en_US
dc.description.validate202206 bckwen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberSHTM-0028, a1821-
dc.identifier.SubFormID45989-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China; Guangxi Key Research and Development Plan; Hong Kong Scholars Programen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS53841099-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Park_Tourism_Demand_Forecasting.pdfPre-Published version2.44 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

81
Last Week
0
Last month
Citations as of Apr 14, 2025

Downloads

73
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

79
Citations as of Sep 12, 2025

WEB OF SCIENCETM
Citations

45
Citations as of Oct 17, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.