Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/93012
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineeringen_US
dc.creatorYang, Cen_US
dc.creatorLiu, Ten_US
dc.creatorZhu, Jen_US
dc.creatorRen, Jen_US
dc.creatorChen, Hen_US
dc.date.accessioned2022-05-30T07:40:05Z-
dc.date.available2022-05-30T07:40:05Z-
dc.identifier.issn2331-7019en_US
dc.identifier.urihttp://hdl.handle.net/10397/93012-
dc.language.isoenen_US
dc.publisherAmerican Physical Societyen_US
dc.rights© 2021 American Physical Societyen_US
dc.rightsThe following publication Yang, C., Liu, T., Zhu, J., Ren, J., & Chen, H. (2021). Surface-Acoustic-Wave Computing of the Grover Quantum Search Algorithm with Metasurfaces. Physical Review Applied, 15(4), 044040 is available at https://doi.org/10.1103/PhysRevApplied.15.044040.en_US
dc.titleSurface-acoustic-wave computing of the grover quantum search algorithm with metasurfacesen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume15en_US
dc.identifier.issue4en_US
dc.identifier.doi10.1103/PhysRevApplied.15.044040en_US
dcterms.abstractWave-based computing has attracted extensive attention recently due to the benefits of parallel processing. In particular, several acoustic wave computing devices have been demonstrated to carry out classical algorithms and mathematical operations. Here, we extend acoustic wave computing to simulate a quantum algorithm, by proposing an integrated acoustic gradient metasurface system supporting spoof surface acoustic waves to implement the Grover quantum search algorithm. We show that this integrated metadevice can achieve a designed subdiffraction and transmission phase, which can be used to simulate operations used in a quantum algorithm, such as the Hadamard transformation and the inverse about the average. Numerical simulations demonstrate promising searching abilities of this device, including a quadratic speedup over classical algorithms and subwavelength searching accuracy. We anticipate that our results will inspire alternative design schemes for on-chip integrated metadevices for more quantum-inspired acoustic analog computations.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationPhysical review applied, Apr. 2021, v. 15, no. 4, 44040en_US
dcterms.isPartOfPhysical review applieden_US
dcterms.issued2021-04-
dc.identifier.scopus2-s2.0-85105381610-
dc.identifier.artn44040en_US
dc.description.validate202205 bchyen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberME-0097-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China; the Shanghai Science and Technology Committee; the Opening Project of Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technologyen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS50339907-
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
PhysRevApplied.15.044040.pdf3.05 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

111
Last Week
0
Last month
Citations as of Oct 6, 2025

Downloads

198
Citations as of Oct 6, 2025

SCOPUSTM   
Citations

8
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

4
Citations as of Jun 27, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.