Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/93005
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineeringen_US
dc.creatorLi, Gen_US
dc.creatorPan, Zen_US
dc.creatorLin, Hen_US
dc.creatorAn, Len_US
dc.date.accessioned2022-05-30T07:40:00Z-
dc.date.available2022-05-30T07:40:00Z-
dc.identifier.issn0925-8388en_US
dc.identifier.urihttp://hdl.handle.net/10397/93005-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rights© 2021 Elsevier B.V. All rights reserved.en_US
dc.rights© 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.rightsThe following publication Li, G., et al. (2021). "In-situ formation of bismuth nanoparticles on nickel foam for ambient ammonia synthesis via electrocatalytic nitrogen reduction." Journal of Alloys and Compounds 875: 160006 is available at https://dx.doi.org/10.1016/j.jallcom.2021.160006.en_US
dc.subjectAmbient ammonia synthesisen_US
dc.subjectBinder-free electrodeen_US
dc.subjectBismuth nanoparticlesen_US
dc.subjectElectrocatalytic nitrogen reductionen_US
dc.subjectIn-situ formationen_US
dc.subjectNickel foamen_US
dc.titleIn-situ formation of bismuth nanoparticles on nickel foam for ambient ammonia synthesis via electrocatalytic nitrogen reductionen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume875en_US
dc.identifier.doi10.1016/j.jallcom.2021.160006en_US
dcterms.abstractBismuth has been regarded as a promising electrocatalyst for triggering nitrogen reduction to ammonia, due to the ease of nitrogen dissociation rendered by the strong interaction between Bi 6p band and the N 2p orbitals. However, the poor conductivity of bismuth limits the electron transfer for nitrogen reduction. In addition, the sluggish water dissociation on the bismuth surface leads to insufficient proton supply for the protonation step of *N2, causing inferior ammonia production performance. In this work, we prepare an integrated and binder-free bismuth nanoparticles@nickel foam electrode for ambient ammonia synthesis via a facile displacement reaction. Using nickel foam as the conductive substrate improves the electron transfer of bismuth for nitrogen reduction to ammonia. In addition, enhanced water dissociation on the nickel surface improves the protonation of *N2 by supplying adequate protons via hydrogen spillover, thus boosting the ammonia production performance. This integrated electrode eliminates the use of polymer binders and reduces the contact resistance between the diffusion layer and catalyst layer, facilitating electron delivery and reducing cell resistance, thus requiring less energy input for ammonia production. The performance examination in an electrochemical H-type cell shows that an ammonia yield rate as high as of 9.3 × 10−11 mol s−1 cm−2 and a Faradaic efficiency of 6.3% are achieved. An ammonia yield rate of 8.19 × 10−11 mol s−1 cm−2 is observed after 6 cycles, with a retention rate of 88%.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of alloys and compounds, 15 Sept. 2021, v. 875, 160006en_US
dcterms.isPartOfJournal of alloys and compoundsen_US
dcterms.issued2021-09-15-
dc.identifier.scopus2-s2.0-85105832502-
dc.identifier.eissn1873-4669en_US
dc.identifier.artn160006en_US
dc.description.validate202205 bchyen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberME-0027-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextCentral Research Grant from The Hong Kong Polytechnic University (PolyU 1-ZE30)en_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS52408230-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Li_In-Situ_Formation_Bismuth.pdfPre-Published version1.53 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

80
Last Week
0
Last month
Citations as of Apr 14, 2025

Downloads

64
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

14
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

10
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.