Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/92967
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Aeronautical and Aviation Engineeringen_US
dc.creatorLo, LYen_US
dc.creatorYiu, CHen_US
dc.creatorTang, Yen_US
dc.creatorYang, ASen_US
dc.creatorLi, Ben_US
dc.creatorWen, CYen_US
dc.date.accessioned2022-05-27T03:16:52Z-
dc.date.available2022-05-27T03:16:52Z-
dc.identifier.urihttp://hdl.handle.net/10397/92967-
dc.language.isoenen_US
dc.publisherMolecular Diversity Preservation International (MDPI)en_US
dc.rights© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).en_US
dc.rightsThe following publication Lo, L. Y., Yiu, C. H., Tang, Y., Yang, A. S., Li, B., & Wen, C. Y. (2021). Dynamic Object Tracking on Autonomous UAV System for Surveillance Applications. Sensors, 21(23), 7888 is available at https://doi.org/10.3390/s21237888en_US
dc.subjectAutonomous surveillanceen_US
dc.subjectDeep learningen_US
dc.subjectKalman filteren_US
dc.subjectObject detectionen_US
dc.subjectObject trackingen_US
dc.subjectUAVen_US
dc.titleDynamic object tracking on autonomous UAV system for surveillance applicationsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume21en_US
dc.identifier.issue23en_US
dc.identifier.doi10.3390/s21237888en_US
dcterms.abstractThe ever-burgeoning growth of autonomous unmanned aerial vehicles (UAVs) has demonstrated a promising platform for utilization in real-world applications. In particular, a UAV equipped with a vision system could be leveraged for surveillance applications. This paper proposes a learningbased UAV system for achieving autonomous surveillance, in which the UAV can be of assistance in autonomously detecting, tracking, and following a target object without human intervention. Specifically, we adopted the YOLOv4-Tiny algorithm for semantic object detection and then consolidated it with a 3D object pose estimation method and Kalman filter to enhance the perception performance. In addition, UAV path planning for a surveillance maneuver is integrated to complete the fully autonomous system. The perception module is assessed on a quadrotor UAV, while the whole system is validated through flight experiments. The experiment results verified the robustness, effectiveness, and reliability of the autonomous object tracking UAV system in performing surveillance tasks. The source code is released to the research community for future reference.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationSensors, Dec. 2021, v. 21, no. 23, 7888en_US
dcterms.isPartOfSensorsen_US
dcterms.issued2021-12-
dc.identifier.scopus2-s2.0-85120890682-
dc.identifier.pmid34883913-
dc.identifier.eissn1424-8220en_US
dc.identifier.artn7888en_US
dc.description.validate202205 bckwen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberAAE-0125-
dc.description.fundingSourceSelf-fundeden_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS59250499-
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
sensors-21-07888-v3.pdf5.46 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

189
Last Week
12
Last month
Citations as of Nov 9, 2025

Downloads

88
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

64
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

45
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.