Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/92859
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Biomedical Engineeringen_US
dc.creatorYang, Zen_US
dc.creatorZhao, Xen_US
dc.creatorHao, Ren_US
dc.creatorTu, Qen_US
dc.creatorTian, Xen_US
dc.creatorXiao, Yen_US
dc.creatorXiong, Ken_US
dc.creatorWang, Men_US
dc.creatorFeng, Yen_US
dc.creatorHuang, Nen_US
dc.creatorPan, Gen_US
dc.date.accessioned2022-05-26T02:18:04Z-
dc.date.available2022-05-26T02:18:04Z-
dc.identifier.issn0027-8424en_US
dc.identifier.urihttp://hdl.handle.net/10397/92859-
dc.language.isoenen_US
dc.publisherNational Academy of Sciencesen_US
dc.rights© 2020. Published under the PNAS license.en_US
dc.rightsThis is the accepted manuscript of the following article: Yang, Z., Zhao, X., Hao, R., Tu, Q., Tian, X., Xiao, Y., ... & Pan, G. (2020). Bioclickable and mussel adhesive peptide mimics for engineering vascular stent surfaces. Proceedings of the National Academy of Sciences, 117(28), 16127-16137, which has been published in final form at https://doi.org/10.1073/pnas.2003732117en_US
dc.subjectEPC captureen_US
dc.subjectMussel adhesive peptideen_US
dc.subjectNO generationen_US
dc.subjectSurface bioengineeringen_US
dc.subjectVascular stentsen_US
dc.titleBioclickable and mussel adhesive peptide mimics for engineering vascular stent surfacesen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage16127en_US
dc.identifier.epage16137en_US
dc.identifier.volume117en_US
dc.identifier.issue28en_US
dc.identifier.doi10.1073/pnas.2003732117en_US
dcterms.abstractThrombogenic reaction, aggressive smooth muscle cell (SMC) proliferation, and sluggish endothelial cell (EC) migration onto bioinert metal vascular stents make poststenting reendothelialization a dilemma. Here, we report an easy to perform, biomimetic surface engineering strategy for multiple functionalization of metal vascular stents. We first design and graft a clickable mussel-inspired peptide onto the stent surface via mussel-inspired adhesion. Then, two vasoactive moieties [i.e., the nitric-oxide (NO)-generating organoselenium (SeCA) and the endothelial progenitor cell (EPC)-targeting peptide (TPS)] are clicked onto the grafted surfaces via bioorthogonal conjugation. We optimize the blood and vascular cell compatibilities of the grafted surfaces through changing the SeCA/TPS feeding ratios. At the optimal ratio of 2:2, the surface-engineered stents demonstrate superior inhibition of thrombosis and SMC migration and proliferation, promotion of EPC recruitment, adhesion, and proliferation, as well as prevention of in-stent restenosis (ISR). Overall, our biomimetic surface engineering strategy represents a promising solution to address clinical complications of cardiovascular stents and other blood-contacting metal materials.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationProceedings of the National Academy of Sciences of the United States of America, 14 July 2020, v. 117, no. 28, p. 16127-16137en_US
dcterms.isPartOfProceedings of the National Academy of Sciences of the United States of Americaen_US
dcterms.issued2020-07-
dc.identifier.scopus2-s2.0-85088179491-
dc.identifier.pmid32601214-
dc.identifier.eissn1091-6490en_US
dc.description.validate202205 bcfcen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberBME-0071-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China; Science and Technology Department of Sichuan Province; Sichuan Provincial Science and Technology Department; National Key Research and Development Program of China; Innovation and Entrepreneurship Program of Jiangsu Province; “SixTalent Peaks” program of Jiangsu Province; Hong Kong Innovation and Technology Support Programmeen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS30071383-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Zhao_Bioclickable_Mussel_Adhesive.pdfPre-Published version1.57 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

90
Last Week
1
Last month
Citations as of Apr 14, 2025

Downloads

80
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

134
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

122
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.