Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/92840
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Biomedical Engineering-
dc.creatorVania, Ven_US
dc.creatorWang, Len_US
dc.creatorTjakra, Men_US
dc.creatorZhang, Ten_US
dc.creatorQiu, Jen_US
dc.creatorTan, Yen_US
dc.creatorWang, Gen_US
dc.date.accessioned2022-05-26T02:17:55Z-
dc.date.available2022-05-26T02:17:55Z-
dc.identifier.issn0925-4439en_US
dc.identifier.urihttp://hdl.handle.net/10397/92840-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rights© 2019 Published by Elsevier B.V.en_US
dc.rights© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.rightsThe following publication Vania, V., Wang, L., Tjakra, M., Zhang, T., Qiu, J., Tan, Y., & Wang, G. (2020). The interplay of signaling pathway in endothelial cells—matrix stiffness dependency with targeted-therapeutic drugs. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1866(5), 165645 is available at https://doi.org/10.1016/j.bbadis.2019.165645en_US
dc.subjectCardiovascular diseaseen_US
dc.subjectEndothelial cellen_US
dc.subjectHippo pathwayen_US
dc.subjectMAPKen_US
dc.subjectMatrix stiffnessen_US
dc.subjectRhoA/ROCKen_US
dc.titleThe interplay of signaling pathway in endothelial cells—matrix stiffness dependency with targeted-therapeutic drugsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume1866en_US
dc.identifier.issue5en_US
dc.identifier.doi10.1016/j.bbadis.2019.165645en_US
dcterms.abstractCardiovascular diseases (CVDs) have been one of the major causes of human deaths in the world. The study of CVDs has focused on cell chemotaxis for decades. With the advances in mechanobiology, accumulating evidence has demonstrated the influence of mechanical stimuli on arterial pathophysiology and endothelial dysfunction that is a hallmark of atherosclerosis development. An increasing number of drugs have been exploited to decrease the stiffness of vascular tissue for CVDs therapy. However, the underlying mechanisms have yet to be explored. This review aims to summarize how matrix stiffness mediates atherogenesis through various important signaling pathways in endothelial cells and cellular mechanophenotype, including RhoA/Rho-associated protein kinase (ROCK), mitogen-activated protein kinase (MAPK), and Hippo pathways. We also highlight the roles of putative mechanosensitive non-coding RNAs in matrix stiffness-mediated atherogenesis. Finally, we describe the usage of tunable hydrogel and its future strategy to improve our knowledge underlying matrix stiffness-mediated CVDs mechanism.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationBiochimica et biophysica acta. Molecular basis of disease, 1 May 2020, v. 1866, no. 5, 165645en_US
dcterms.isPartOfBiochimica et biophysica acta. Molecular basis of diseaseen_US
dcterms.issued2020-05-01-
dc.identifier.scopus2-s2.0-85077319467-
dc.identifier.pmid31866415-
dc.identifier.artn165645en_US
dc.description.validate202205 bcfc-
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberBME-0085-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China; Chongqing Research Program of Basic Research and Frontier Technology; Shenzhen Scienceand Technology Innovation Commissionen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS20429252-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Tan_Interplay_Signaling_Pathway.pdfPre-Published version2.98 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

76
Last Week
0
Last month
Citations as of Apr 14, 2025

Downloads

259
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

18
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

17
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.