Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/92348
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Chinese and Bilingual Studiesen_US
dc.creatorWong, TSen_US
dc.creatorLee, Jen_US
dc.date.accessioned2022-03-22T06:32:46Z-
dc.date.available2022-03-22T06:32:46Z-
dc.identifier.isbn978-1-4503-7766-9en_US
dc.identifier.urihttp://hdl.handle.net/10397/92348-
dc.language.isoenen_US
dc.publisherAssociation for Computing Machineryen_US
dc.rights© 2019 Association for Computing Machinery.en_US
dc.rightsThis is the accepted version of the publication Tak-sum Wong and John Lee. 2019. Character Profiling in Low-Resource Language Documents. In Proceedings of the 24th Australasian Document Computing Symposium (ADCS '19). Association for Computing Machinery, New York, NY, USA, Article 5, 1-4. The final published version of record is available at https://dx.doi.org/10.1145/3372124.3372129en_US
dc.subjectDependency parsingen_US
dc.subjectInformation extractionen_US
dc.subjectLow-resource languageen_US
dc.subjectMedieval Chineseen_US
dc.subjectNamed entity recognitionen_US
dc.titleCharacter profiling in low-resource language documentsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.doi10.1145/3372124.3372129en_US
dcterms.abstractThis paper focuses on automatic character profiling — connecting “who”, “what” and “when” — in literary documents. This task is especially challenging for low-resource languages, since off-the-shelf tools for named entity recognition, syntactic parsing and other natural language processing tasks are rarely available. We investigate the impact of human annotation on automatic profiling. Based on a Medieval Chinese corpus, experimental results show that even a relatively small amount of word segmentation, part-of-speech and dependency annotation can improve accuracy in named entity recognition and in identifying character-verb associations, but not character-toponym associations.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationIn G Demartini & P Thomas (Eds.), ADCS 2019 : proceedings of the 24th Australasian Document Computing Symposium : Sydney, Australia, December 5-6, 2019. New York, NY, United States : Association for Computing Machinery, 2019.en_US
dcterms.issued2019-
dc.identifier.scopus2-s2.0-85123042737-
dc.relation.ispartofbookADCS 2019 : Proceedings of the 24th Australasian Document Computing Symposium, Sydney, Australia, December 5-6, 2019en_US
dc.relation.conferenceAustralasian Document Computing Symposium [ADCS]en_US
dc.description.validate202203 bcfcen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera1220-n05, CBS-0250en_US
dc.identifier.SubFormID44227-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS27722138en_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Conference Paper
Files in This Item:
File Description SizeFormat 
ADCS2019_Buddhist_cameraready.pdfPre-Published version394 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

79
Last Week
0
Last month
Citations as of Jan 19, 2025

Downloads

67
Citations as of Jan 19, 2025

SCOPUSTM   
Citations

2
Citations as of Jan 9, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.