Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/92278
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorZeng, Fen_US
dc.creatorGao, Yen_US
dc.creatorXue, Xen_US
dc.date.accessioned2022-03-10T08:59:04Z-
dc.date.available2022-03-10T08:59:04Z-
dc.identifier.issn1531-3492en_US
dc.identifier.urihttp://hdl.handle.net/10397/92278-
dc.language.isoenen_US
dc.publisherAmerican Institute of Mathematical Sciencesen_US
dc.rightsDCDS-B is a publication of the American Institute of Mathematical Sciences. All rights reserved.en_US
dc.rightsThis is a pre-copy-editing, author-produced PDF of an article accepted for publication in Discrete and Continuous Dynamical Systems - B following peer review. The definitive publisher-authenticated version Fanqin Zeng, Yu Gao, Xiaoping Xue. Global weak solutions to the generalized mCH equation via characteristics. Discrete and Continuous Dynamical Systems - B, 2022, 27(8): 4317-4329 is available online at: https://dx.doi.org/10.3934/dcdsb.2021229.en_US
dc.subjectLagrangian dynamicsen_US
dc.subjectLocal classical solutionsen_US
dc.subjectGlobal weak solutionsen_US
dc.subjectDouble mollification methoden_US
dc.titleGlobal weak solutions to the generalized mCH equation via characteristicsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage4317en_US
dc.identifier.epage4329en_US
dc.identifier.volume27en_US
dc.identifier.issue8en_US
dc.identifier.doi10.3934/dcdsb.2021229en_US
dcterms.abstractIn this paper, we study the generalized modi ed Camassa-Holm(gmCH) equation via characteristics. We rst change the gmCH equation forunknowns (u;m) into its Lagrangian dynamics for characteristics X( ; t), where 2 R is the Lagrangian label. When X ( ; t) > 0, we use the solutions to theLagrangian dynamics to recover the classical solutions with m( ; t) 2 Ck0 (R)(k 2 N; k 1) to the gmCH equation. The classical solutions (u;m) to thegmCH equation will blow up if inf 2R X ( ; Tmax) = 0 for some Tmax > 0.After the blow-up time Tmax, we use a double molli cation method to mollifythe Lagrangian dynamics and construct global weak solutions (with m in space-time Radon measure space) to the gmCH equation by some space-time BVcompactness arguments.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationDiscrete and continuous dynamical systems. Series B, 2022, v. 27, no. 8, p. 4317-4329en_US
dcterms.isPartOfDiscrete and continuous dynamical systems. Series Ben_US
dcterms.issued2022-
dc.identifier.eissn1553-524Xen_US
dc.description.validate202203 bcvcen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera1185-n01-
dc.identifier.SubFormID44105-
dc.description.fundingSourceOthersen_US
dc.description.fundingText11731010; 11671109en_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Zeng_Global_mCH_Characteristics.pdfPre-Published version224.84 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

117
Last Week
0
Last month
Citations as of Apr 14, 2025

Downloads

71
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

1
Citations as of Aug 15, 2024

WEB OF SCIENCETM
Citations

1
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.