Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/92232
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorNie, JWen_US
dc.creatorTang, XDen_US
dc.date.accessioned2022-02-28T06:21:31Z-
dc.date.available2022-02-28T06:21:31Z-
dc.identifier.issn0025-5610en_US
dc.identifier.urihttp://hdl.handle.net/10397/92232-
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.rights© The Author(s) 2021en_US
dc.rightsThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.en_US
dc.rightsThe following publication Nie, J., Tang, X. Convex generalized Nash equilibrium problems and polynomial optimization. Math. Program. 198, 1485–1518 (2023) is available at https://doi.org/10.1007/s10107-021-01739-7en_US
dc.subjectGeneralized Nash equilibrium problemen_US
dc.subjectConvex polynomialen_US
dc.subjectPolynomial optimizationen_US
dc.subjectMoment-SOS relaxationen_US
dc.subjectLagrange multiplier expressionen_US
dc.titleConvex generalized Nash equilibrium problems and polynomial optimizationen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage1485-
dc.identifier.epage1518-
dc.identifier.volume198-
dc.identifier.issue2-
dc.identifier.doi10.1007/s10107-021-01739-7en_US
dcterms.abstractThis paper studies convex generalized Nash equilibrium problems that are given by polynomials. We use rational and parametric expressions for Lagrange multipliers to formulate efficient polynomial optimization for computing generalized Nash equilibria (GNEs). The Moment-SOS hierarchy of semidefinite relaxations are used to solve the polynomial optimization. Under some general assumptions, we prove the method can find a GNE if there exists one, or detect nonexistence of GNEs. Numerical experiments are presented to show the efficiency of the method.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationMathematical programming, Apr. 2023, v. 198, no. 2, p. 1485-1518-
dcterms.isPartOfMathematical programmingen_US
dcterms.issued2023-04-
dc.identifier.isiWOS:000727761100001-
dc.identifier.scopus2-s2.0-85120691355-
dc.description.validate202202 bcwhen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumbera1183-n01-
dc.identifier.SubFormID44104-
dc.description.fundingSourceSelf-fundeden_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
s10107-021-01739-7.pdf589.06 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

103
Last Week
0
Last month
Citations as of Nov 9, 2025

Downloads

35
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

15
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

15
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.