Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/92174
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorLiu, Zen_US
dc.creatorQiao, Zen_US
dc.date.accessioned2022-02-18T01:56:14Z-
dc.date.available2022-02-18T01:56:14Z-
dc.identifier.issn2194-0401en_US
dc.identifier.urihttp://hdl.handle.net/10397/92174-
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.rights© Springer Science+Business Media, LLC, part of Springer Nature 2020en_US
dc.rightsThis version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use (https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms), but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s40072-020-00179-2en_US
dc.subjectEuler schemeen_US
dc.subjectGalerkin finite element methoden_US
dc.subjectMilstein schemeen_US
dc.subjectMonotone stochastic partial differential equationen_US
dc.subjectStochastic Allen–Cahn equationen_US
dc.titleStrong approximation of monotone stochastic partial differential equations driven by multiplicative noiseen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage559en_US
dc.identifier.epage602en_US
dc.identifier.volume9en_US
dc.identifier.issue3en_US
dc.identifier.doi10.1007/s40072-020-00179-2en_US
dcterms.abstractWe establish a general theory of optimal strong error estimation for numerical approximations of a second-order parabolic stochastic partial differential equation with monotone drift driven by a multiplicative infinite-dimensional Wiener process. The equation is spatially discretized by Galerkin methods and temporally discretized by drift-implicit Euler and Milstein schemes. By the monotone and Lyapunov assumptions, we use both the variational and semigroup approaches to derive a spatial Sobolev regularity under the LpωL∞tH˙1+γ-norm and a temporal Hölder regularity under the LpωL2x-norm for the solution of the proposed equation with an H˙1+γ-valued initial datum for γ∈[0,1]. Then we make full use of the monotonicity of the equation and tools from stochastic calculus to derive the sharp strong convergence rates O(h1+γ+τ1/2) and O(h1+γ+τ(1+γ)/2) for the Galerkin-based Euler and Milstein schemes, respectively.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationStochastic partial differential equations: analysis and computations, Sept. 2021, v. 9, no. 3, p. 559-602en_US
dcterms.isPartOfStochastic partial differential equations: analysis and computationsen_US
dcterms.issued2021-09-
dc.identifier.scopus2-s2.0-85088991996-
dc.description.validate202202 bchyen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera1160-n03-
dc.identifier.SubFormID44030-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextRGC: 15325816; 16307319en_US
dc.description.fundingTextOthers: 1-ZE33en_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
44030.pdfPre-Published version986.88 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

132
Last Week
0
Last month
Citations as of Oct 6, 2025

Downloads

87
Citations as of Oct 6, 2025

SCOPUSTM   
Citations

34
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

22
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.