Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/92173
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorLiu, Cen_US
dc.creatorQiao, Zen_US
dc.creatorZhang, Qen_US
dc.date.accessioned2022-02-18T01:56:13Z-
dc.date.available2022-02-18T01:56:13Z-
dc.identifier.issn1064-8275en_US
dc.identifier.urihttp://hdl.handle.net/10397/92173-
dc.language.isoenen_US
dc.publisherSociety for Industrial and Applied Mathematicsen_US
dc.rights© 2022, Society for Industrial and Applied Mathematicsen_US
dc.subjectImage segmentationen_US
dc.subjectAllen-Cahn equationen_US
dc.subjectEdge detectionen_US
dc.subjectExponential time differencing methoden_US
dc.subjectInhomogeneous graph Laplacianen_US
dc.subjectEnergy stabilityen_US
dc.titleTwo-phase segmentation for intensity inhomogeneous images by the allen--cahn local binary fitting modelen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spageB177en_US
dc.identifier.epageB196en_US
dc.identifier.volume44en_US
dc.identifier.issue1en_US
dc.identifier.doi10.1137/21M1421830en_US
dcterms.abstractThis paper proposes a new variational model by integrating the Allen--Cahn term with a local binary fitting energy term for segmenting images with intensity inhomogeneity and noise. An inhomogeneous graph Laplacian initialization method (IGLIM) is developed to give the initial contour for two-phase image segmentation problems. To solve the Allen--Cahn equation derived from the variational model, we adopt the exponential time differencing (ETD) method for temporal discretization, and the central finite difference method for spatial discretization. The energy stability of proposed numerical schemes can be proved. Experiments on various images demonstrate the necessity and superiority of proper initialization and verify the capability of our model for two-phase segmentation of images with intensity inhomogeneity and noise.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationSIAM journal on scientific computing, 2022, v. 44, no. 1, p. B177-B196en_US
dcterms.isPartOfSIAM journal on scientific computingen_US
dcterms.issued2022-02-
dc.identifier.eissn1095-7197en_US
dc.description.validate202202 bchyen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera1160-n02-
dc.identifier.SubFormID44026-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextRGC: RFS2021-5S03; 15300417; 15302919en_US
dc.description.fundingTextOthers: G-YZ2Yen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
44026 LQZ_AC_LBF_final.pdfPre-Published version4.79 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

117
Last Week
0
Last month
Citations as of Apr 14, 2025

Downloads

135
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

10
Citations as of Aug 15, 2024

WEB OF SCIENCETM
Citations

15
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.