Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/92144
| Title: | Fluorescence imaging and photodynamic inactivation of bacteria based on cationic cyclometalated iridium(III) complexes with aggregation-induced emission properties | Authors: | Ho, PY Lee, SY Kam, C Zhu, J Shan, GG Hong, Y Wong, WY Chen, S |
Issue Date: | Dec-2021 | Source: | Advanced healthcare materials, 22 Dec. 2021, v. 10, no. 24, 2100706 | Abstract: | Antibacterial photodynamic therapy (PDT) is one of the emerging methods for curbing multidrug-resistant bacterial infections. Effective fluorescent photosensitizers with dual functions of bacteria imaging and PDT applications are highly desirable. In this study, three cationic and heteroleptic cyclometalated Ir(III) complexes with the formula of [Ir(CˆN)2(NˆN)][PF6] are prepared and characterized. These Ir(III) complexes named Ir(ppy)2bP, Ir(1-pq)2bP, and Ir(2-pq)2bP are comprised of three CˆN ligands (i.e., 2-phenylpyridine (ppy), 1-phenylisoquinoline (1-pq), and 2-phenylquinoline (2-pq)) and one NˆN bidentate co-ligand (bP). The photophysical characterizations demonstrate that these Ir(III) complexes are red-emitting, aggregation-induced emission active luminogens. The substitution of phenylpyridine with phenylquinoline isomers in the molecules greatly enhances their UV and visible-light absorbance as well as the photoinduced reactive oxygen species (ROS) generation ability. All three Ir(III) complexes can stain both Gram-positive and Gram-negative bacteria efficiently. Interestingly, even though Ir(1-pq)2bP and Ir(2-pq)2bP are constitutional isomers with very similar structures and similar ROS generation ability in buffer, the former eradicates bacteria much more effectively than the other through white light-irradiated photodynamic inactivation. This work will provide valuable information on the rational design of Ir(III) complexes for fluorescence imaging and efficient photodynamic inactivation of bacteria. | Keywords: | Aggregation-induced emission Bacteria Iridium(III) complexes Photodynamic inactivation Photosensitizers |
Publisher: | Wiley-VCH | Journal: | Advanced healthcare materials | ISSN: | 2192-2640 | EISSN: | 2192-2659 | DOI: | 10.1002/adhm.202100706 | Rights: | © 2021 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Ain Shams University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). The following publication Ho, P.-Y., Lee, S.-Y., Kam, C., Zhu, J., Shan, G.-G., Hong, Y., Wong, W.-Y., Chen, S., Fluorescence Imaging and Photodynamic Inactivation of Bacteria Based on Cationic Cyclometalated Iridium(III) Complexes with Aggregation-Induced Emission Properties. Adv. Healthcare Mater. 2021, 10, 2100706 is available at https://doi.org/10.1002/adhm.202100706 |
| Appears in Collections: | Journal/Magazine Article |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| Ho_Fluorescence_Imaging_Photodynamic.pdf | 2.12 MB | Adobe PDF | View/Open |
Page views
150
Last Week
8
8
Last month
Citations as of Nov 10, 2025
Downloads
75
Citations as of Nov 10, 2025
SCOPUSTM
Citations
56
Citations as of Dec 19, 2025
WEB OF SCIENCETM
Citations
59
Citations as of Dec 18, 2025
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.



