Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/92119
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematics-
dc.creatorLuo, Y-
dc.date.accessioned2022-02-08T02:18:04Z-
dc.date.available2022-02-08T02:18:04Z-
dc.identifier.issn1547-1063-
dc.identifier.urihttp://hdl.handle.net/10397/92119-
dc.language.isoenen_US
dc.publisherAmerican Institute of Mathematical Sciencesen_US
dc.rights© 2021 the Author(s), licensee AIMS Press. Thisis an open access article distributed under theterms of the Creative Commons Attribution License(http://creativecommons.org/licenses/by/4.0)en_US
dc.rightsThe following publication Luo, Y. (2021). Global existence and stability of the classical solution to a density-dependent prey-predator model with indirect prey-taxis. Mathematical Biosciences and Engineering, 18(5), 6672-6699 is available at https://doi.org/10.3934/mbe.2021331en_US
dc.subjectAsymptotical stabilityen_US
dc.subjectDensity-dependenten_US
dc.subjectIndirect prey-taxisen_US
dc.subjectLyapunov functionen_US
dc.subjectNonlinear semigroupen_US
dc.titleGlobal existence and stability of the classical solution to a density-dependent prey-predator model with indirect prey-taxisen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage6672-
dc.identifier.epage6699-
dc.identifier.volume18-
dc.identifier.issue5-
dc.identifier.doi10.3934/mbe.2021331-
dcterms.abstractWe study the existence of global unique classical solution to a density-dependent preypredator population system with indirect prey-taxis effect. With two Lyapunov functions appropriately constructed, we then show that the solution can asymptotically approach prey-only state or coexistence state of the system under suitable conditions. Moreover, linearized analysis on the system at these two constant steady states shows their linear instability criterion. By numerical simulation we find that some density-dependent prey-taxis and predators’ diffusion may either flatten the spatial one-dimensional patterns which exist in non-density-dependent case, or break the spatial two-dimensional distribution similarity which occurs in non-density-dependent case between predators and chemoattractants (released by prey).-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationMathematical biosciences and engineering, 2021, v. 18, no. 5, p. 6672-6699-
dcterms.isPartOfMathematical biosciences and engineering-
dcterms.issued2021-
dc.identifier.scopus2-s2.0-85112697615-
dc.description.validate202202 bcvc-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOSen_US
dc.description.fundingSourceNot mentionen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
611208f0ba35de0c627df28b.pdf3.98 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

75
Last Week
0
Last month
Citations as of May 11, 2025

Downloads

68
Citations as of May 11, 2025

SCOPUSTM   
Citations

4
Citations as of Jun 6, 2025

WEB OF SCIENCETM
Citations

4
Citations as of Jun 5, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.