Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/92092
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Building and Real Estate-
dc.creatorKong, L-
dc.creatorLi, H-
dc.creatorZhang, B-
dc.creatorLuo, H-
dc.date.accessioned2022-02-07T07:06:05Z-
dc.date.available2022-02-07T07:06:05Z-
dc.identifier.issn1687-8086-
dc.identifier.urihttp://hdl.handle.net/10397/92092-
dc.language.isoenen_US
dc.publisherHindawi Publishing Corporationen_US
dc.rightsCopyright © 2021 Liulin Kong et al.en_US
dc.rightsThis is an open access article distributed under the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/),which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.en_US
dc.rightsThe following publication Kong, L., Li, H., Zhang, B., & Luo, H. (2021). Estimation of High Structural Reliability Involving Nonlinear Dependencies Based on Linear Correlations. Advances in Civil Engineering, 2021 is available at https://doi.org/10.1155/2021/8836330en_US
dc.titleEstimation of high structural reliability involving nonlinear dependencies based on linear correlationsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume2021-
dc.identifier.doi10.1155/2021/8836330-
dcterms.abstractStochastic nonlinear dependencies have been reported extensively between different uncertain parameters or in their time or spatial variance. However, the description of dependency is commonly not provided except a linear correlation. The structural reliability incorporating nonlinear dependencies thus needs to be addressed based on the linear correlations. This paper first demonstrates the capture of nonlinear dependency by fitting various bivariate non-Gaussian copulas to limited data samples of structural material properties. The vine copula model is used to enable a flexible modeling of multiple nonlinear dependencies by mapping the linear correlations into the non-Gaussian copula parameters. A sequential search strategy is applied to achieve the estimate of numerous copula parameters, and a simplified algorithm is further designed for reliability involving stationary stochastic processes. The subset simulation is then adopted to efficiently generate random variables from the corresponding distribution for high reliability evaluation. Two examples including a frame structure with different stochastic material properties and a cantilever beam with spatially variable stochastic modulus are investigated to discuss the possible effects of nonlinear dependency on structural reliability. Since the dependency can be determined qualitatively from limited data, the proposed method provides a feasible way for reliability evaluation with prescriptions on correlated stochastic parameters.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationAdvances in civil engineering, 2021, v. 2021, 8836330-
dcterms.isPartOfAdvances in civil engineering-
dcterms.issued2021-
dc.identifier.isiWOS:000693729600002-
dc.identifier.eissn1687-8094-
dc.identifier.artn8836330-
dc.description.validate202202 bchy-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOSen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextThis research was supported by the National Natural Science Foundation of China (NSFC), under Grant no. 51608399, and Jiangsu Smart Factory Engineering Research Center (Huaiyin Institute of Technology), under Grant no. JSFE1903.)e authors gratefully acknowledge the assistance of Dr. Fan Wang for his support in the calculation.en_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Kong_Estimation_High_Structural.pdf1.72 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

113
Last Week
0
Last month
Citations as of Nov 9, 2025

Downloads

75
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

1
Citations as of Jun 21, 2024

WEB OF SCIENCETM
Citations

1
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.