Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/91982
DC Field | Value | Language |
---|---|---|
dc.contributor | Department of Building Environment and Energy Engineering | - |
dc.creator | Mui, KW | - |
dc.creator | Wong, LT | - |
dc.creator | Satheesan, MK | - |
dc.creator | Balachandran, A | - |
dc.date.accessioned | 2022-02-07T07:04:46Z | - |
dc.date.available | 2022-02-07T07:04:46Z | - |
dc.identifier.uri | http://hdl.handle.net/10397/91982 | - |
dc.language.iso | en | en_US |
dc.publisher | Molecular Diversity Preservation International (MDPI) | en_US |
dc.rights | © 2021 by the authors.Licensee MDPI, Basel, Switzerland.This article is an open access articledistributed under the terms andconditions of the Creative CommonsAttribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). | en_US |
dc.rights | The following publication Mui, K.W.;Wong, L.T.;Satheesan, M.K.; Balachandran, A. AHybrid Simulation Model to Predictthe Cooling Energy Consumption forResidential Housing in Hong Kong.Energies 2021, 14, 4850 is available at https://doi.org/10.3390/en14164850 | en_US |
dc.subject | Annual cooling energy prediction | en_US |
dc.subject | Climate change | en_US |
dc.subject | Hybrid EP-ANN model | en_US |
dc.subject | Residential buildings | en_US |
dc.title | A hybrid simulation model to predict the cooling energy consumption for residential housing in Hong Kong | en_US |
dc.type | Journal/Magazine Article | en_US |
dc.identifier.volume | 14 | - |
dc.identifier.issue | 16 | - |
dc.identifier.doi | 10.3390/en14164850 | - |
dcterms.abstract | In Hong Kong, buildings consume 90% of the electricity generated and over 60% of the city’s carbon emissions are attributable to generating power for buildings. In 2018, Hong Kong residential sector consumed 41,965 TJ (26%) of total electricity generated, with private housing accounting for 52% and public housing taking in 26%, making them the two major contributors of greenhouse gas emissions. Furthermore, air conditioning was the major source consuming 38% of the electricity generated for the residential building segment. Strategizing building energy efficiency measures to reduce the cooling energy consumption of the residential building sector can thus have far-reaching benefits. This study proposes a hybrid simulation strategy that integrates artificial intelligence techniques with a building energy simulation tool (EnergyPlus™) to predict the annual cooling energy consumption of residential buildings in Hong Kong. The proposed method predicts long-term thermal energy demand (annual cooling energy consumption) based on shortterm (hourly) simulated data. The hybrid simulation model can analyze the impacts of building materials, construction solutions, and indoor–outdoor temperature variations on the cooling energy consumed in apartments. The results indicate that using low thermal conductivity building materials for windows and external walls can reduce the annual cooling energy consumption by 8.19%, and decreasing the window-to-wall ratio from 80% to 40% can give annual cooling energy savings of up to 18%. Moreover, significant net annual cooling energy savings of 13.65% can be achieved by changing the indoor set-point temperature from 24◦C to 26◦C. The proposed model will serve as a reference for building energy efficiency practitioners to identify key relationships between building physical characteristics and operational strategies to minimize cooling energy demand at a minimal time in comparison to traditional energy estimation methods. | - |
dcterms.accessRights | open access | en_US |
dcterms.bibliographicCitation | Energies, Aug. 2021, v. 14, no. 16, 4850 | - |
dcterms.isPartOf | Energies | - |
dcterms.issued | 2021-08 | - |
dc.identifier.scopus | 2-s2.0-85112445372 | - |
dc.identifier.eissn | 1996-1073 | - |
dc.identifier.artn | 4850 | - |
dc.description.validate | 202202 bcvc | - |
dc.description.oa | Version of Record | en_US |
dc.identifier.FolderNumber | OA_Scopus/WOS | en_US |
dc.description.fundingSource | RGC | en_US |
dc.description.fundingSource | Others | en_US |
dc.description.fundingText | This research was funded by the General Research Fund, University Grants Committee of HKSAR (Project no. PolyU P0005278/17E) and Research Institute for Smart Energy, The Hong Kong Polytechnic University. | en_US |
dc.description.pubStatus | Published | en_US |
dc.description.oaCategory | CC | en_US |
Appears in Collections: | Journal/Magazine Article |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
energies-14-04850.pdf | 3.81 MB | Adobe PDF | View/Open |
Page views
211
Last Week
1
1
Last month
Citations as of Apr 13, 2025
Downloads
66
Citations as of Apr 13, 2025
SCOPUSTM
Citations
12
Citations as of May 8, 2025
WEB OF SCIENCETM
Citations
10
Citations as of May 8, 2025

Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.