Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/91954
DC FieldValueLanguage
dc.contributorDepartment of Building Environment and Energy Engineeringen_US
dc.contributorDepartment of Mechanical Engineeringen_US
dc.creatorLai, TWen_US
dc.creatorFu, SCen_US
dc.creatorChan, KCen_US
dc.creatorChao, CYHen_US
dc.date.accessioned2022-02-07T06:32:47Z-
dc.date.available2022-02-07T06:32:47Z-
dc.identifier.citationv. 56, no. 3, p. 247-260-
dc.identifier.issn0278-6826en_US
dc.identifier.otherv. 56, no. 3, p. 247-260-
dc.identifier.urihttp://hdl.handle.net/10397/91954-
dc.language.isoenen_US
dc.publisherTaylor & Francisen_US
dc.titleThe use of acoustic streaming in Sub-micron particle sortingen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage247en_US
dc.identifier.epage260en_US
dc.identifier.volume56en_US
dc.identifier.issue3en_US
dc.identifier.doi10.1080/02786826.2021.2005769en_US
dcterms.abstractThe lack of personal particulate matter (PM) monitoring technique hinders the knowledge of the negative health impacts caused by inhaling PM. Acoustophoresis has a potential to produce miniature particle sorters that can be carried inside human’s breath zone. Micron particles can be manipulated by Acoustic Radiation Force (ARF), but sub-micron particles can hardly be directed due to Acoustic Streaming Effect (ASE). The purpose of this study is to examine the feasibility of sorting sub-micron particles using ASE. In this study, a 2 D numerical model is used to simulate the movement of sub-micron particles, ranging from 0.1 µm to 0.9 µm in diameter with 0.1 µm step size, suspended in a microchannel. Since tiny particles circulate according to the streaming pattern, which depends on the geometry of the container, the effect of the microchannel’s cross-sectional shape on particle movement is investigated, from rectangular to non-rectangular. Results found that sub-micron particles are characterized as either ARF-dominant or ASE-dominant. ARF-dominant particles stop at the pressure node and sidewalls, while ASE-dominant particles are trapped by the streaming flow inside a certain area defined by the particle size. Larger ASE-dominant particles move in a narrower region close to the sidewalls; smaller particles occupy a wider area. Since ASE-dominant particles can be directed outside the settling location of ARF-dominated particles, separating them can reach 98.9% purity in a non-rectangular microchannel. Most importantly, separating ASE-dominant particles of different sizes is shown possible using a triangular microchannel. The findings imply that ASE can be the mechanism for sub-micron particle sorting.en_US
dcterms.accessRightsembargoed accessen_US
dcterms.bibliographicCitationAerosol science and technology, 2022, v. 56, no. 3, p. 247-260en_US
dcterms.isPartOfAerosol science and technologyen_US
dcterms.issued2022-
dc.identifier.isiWOS:000723465900001-
dc.identifier.scopus2-s2.0-85120064114-
dc.identifier.eissn1521-7388en_US
dc.description.validate2022 bcvcen_US
dc.description.oaNot applicableen_US
dc.identifier.FolderNumbera1151-n01-
dc.identifier.SubFormID44011-
dc.description.fundingSourceRGCen_US
dc.description.fundingTextCollaborative Research Fund (CRF) (project no. C7025-16G), General Research Fund (GRF) (project no.16206918)en_US
dc.description.pubStatusPublisheden_US
dc.date.embargo2022-11-29en_US
Appears in Collections:Journal/Magazine Article
Open Access Information
Status embargoed access
Embargo End Date 2022-11-29
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

16
Citations as of Jun 26, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.