Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/91510
DC Field | Value | Language |
---|---|---|
dc.contributor | Department of Civil and Environmental Engineering | en_US |
dc.creator | Lu, H | en_US |
dc.creator | Huang, F | en_US |
dc.creator | Guo, H | en_US |
dc.date.accessioned | 2021-11-03T06:54:16Z | - |
dc.date.available | 2021-11-03T06:54:16Z | - |
dc.identifier.issn | 2470-1343 | en_US |
dc.identifier.uri | http://hdl.handle.net/10397/91510 | - |
dc.language.iso | en | en_US |
dc.publisher | American Chemical Society | en_US |
dc.rights | © 2021 The Authors. Published by American Chemical Society | en_US |
dc.rights | This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). | en_US |
dc.rights | The following publication Lu, H., Huang, F., & Guo, H. (2021). Differential Removal of Nanoparticles on the Surface of a Thin Film Substrate. ACS Omega is available at https://doi.org/10.1021/acsomega.1c00334 | en_US |
dc.title | Differential removal of nanoparticles on the surface of a thin film substrate | en_US |
dc.type | Journal/Magazine Article | en_US |
dc.identifier.spage | 16280 | en_US |
dc.identifier.epage | 16287 | en_US |
dc.identifier.volume | 6 | en_US |
dc.identifier.issue | 25 | en_US |
dc.identifier.doi | 10.1021/acsomega.1c00334 | en_US |
dcterms.abstract | Purposeful identification, selection, and collection of particles are of great significance in environmental research. Microscopy is the common technique used in previous studies of particle identification. However, the microscopic technique was intricate and time-consuming. To conduct an intensive analysis of targeted particles, there is a need for the development of a simple method that can differentially abandon the nontargeted particles and only retain the targeted particles on the surface of a substrate. In the study, three methods were attempted for differential removal of nontargeted nanoparticles on the surface, including air jet, nanobubble, and ultrasonic methods. Acidic particles were taken as the targeted particles, while nonacidic particles were regarded as nontargeted particles. The results showed that regardless of methods, acidic particles were retained on the surface due to the strong particle-surface interaction. As for nonacidic particles, air jet treatment and nanobubble treatment were not able to completely remove nonacidic particles from the surface with the removal efficiencies of 5.1 ± 3.4 and 89.3 ± 4.1%, respectively, while the nonacidic particles were entirely removed in the ultrasonic treatment. Ethanol rather than deionized (DI) water was the proper solution in the ultrasonic treatment to avoid contamination. In conclusion, ultrasonic by ethanol was fully efficient for differential removal of nonacidic particles on the surface. The principle of differential removal of particles is the differences in the particle-surface interaction force between nonacidic particles (i.e., physically attached particles) and acidic particles (i.e., chemically formed particles). Nonacidic particles are removed from the surface through cavitation to form bubbles in the gap between a nonacidic particle and the surface in the ultrasonic treatment. In contrast, the space between an acidic particle and the surface is filled by the reaction, and thus bubbles cannot enter the crevice to remove the acidic particle. The developed method is useful for aerosol research. | en_US |
dcterms.accessRights | open access | en_US |
dcterms.bibliographicCitation | ACS omega, 29 June 2021, v. 6, no. 25, p. 16280-16287 | en_US |
dcterms.isPartOf | ACS omega | en_US |
dcterms.issued | 2021-06-29 | - |
dc.identifier.scopus | 2-s2.0-85110119113 | - |
dc.description.validate | 202110 bcvc | en_US |
dc.description.oa | Version of Record | en_US |
dc.identifier.FolderNumber | OA_Scopus/WOS, a1497 | en_US |
dc.identifier.SubFormID | 45171 | - |
dc.description.fundingSource | Others | en_US |
dc.description.fundingText | National Key Research and Development Program of China (Number: 2017YFC0212001), the Strategic Focus Area scheme of the Research Institute for Sustainable Urban Development at the Hong Kong Polytechnic University (1-BBW9), the University Strategic Importance scheme at the Hong Kong Polytechnic University (1-ZE1M), the Environment and Conservation Fund (ECF) of the Hong Kong Special Administrative Region (ECF59/2015), and the Hong Kong PhD Fellowship (project number: RULW) | en_US |
dc.description.pubStatus | Published | en_US |
dc.description.oaCategory | CC | en_US |
Appears in Collections: | Journal/Magazine Article |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
acsomega.1c00334.pdf | 7.26 MB | Adobe PDF | View/Open |
Page views
99
Last Week
2
2
Last month
Citations as of Sep 8, 2024
Downloads
69
Citations as of Sep 8, 2024
SCOPUSTM
Citations
1
Citations as of Sep 19, 2024
WEB OF SCIENCETM
Citations
1
Citations as of Jun 20, 2024
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.