Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/91412
Title: | Lexical data augmentation for sentiment analysis | Authors: | Xiang, R Chersoni, E Lu, Q Huang, CR Li, W Long, Y |
Issue Date: | Nov-2021 | Source: | Journal of the Association for Information Science and Technology, Nov. 2021, v. 72, no. 11, p. 1432-1447 | Abstract: | Machine learning methods, especially deep learning models, have achieved impressive performance in various natural language processing tasks including sentiment analysis. However, deep learning models are more demanding for training data. Data augmentation techniques are widely used to generate new instances based on modifications to existing data or relying on external knowledge bases to address annotated data scarcity, which hinders the full potential of machine learning techniques. This paper presents our work using part-of-speech (POS) focused lexical substitution for data augmentation (PLSDA) to enhance the performance of machine learning algorithms in sentiment analysis. We exploit POS information to identify words to be replaced and investigate different augmentation strategies to find semantically related substitutions when generating new instances. The choice of POS tags as well as a variety of strategies such as semantic-based substitution methods and sampling methods are discussed in detail. Performance evaluation focuses on the comparison between PLSDA and two previous lexical substitution-based data augmentation methods, one of which is thesaurus-based, and the other is lexicon manipulation based. Our approach is tested on five English sentiment analysis benchmarks: SST-2, MR, IMDB, Twitter, and AirRecord. Hyperparameters such as the candidate similarity threshold and number of newly generated instances are optimized. Results show that six classifiers (SVM, LSTM, BiLSTM-AT, bidirectional encoder representations from transformers [BERT], XLNet, and RoBERTa) trained with PLSDA achieve accuracy improvement of more than 0.6% comparing to two previous lexical substitution methods averaged on five benchmarks. Introducing POS constraint and well-designed augmentation strategies can improve the reliability of lexical data augmentation methods. Consequently, PLSDA significantly improves the performance of sentiment analysis algorithms. | Publisher: | John Wiley & Sons | Journal: | Journal of the Association for Information Science and Technology | ISSN: | 2330-1635 | EISSN: | 2330-1643 | DOI: | 10.1002/asi.24493 | Rights: | © 2021 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Ain Shams University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). The following publication Xiang, R., Chersoni, E., Lu, Q., Huang, C. -., Li, W., & Long, Y. (2021). Lexical data augmentation for sentiment analysis. Journal of the Association for Information Science and Technology, 72(11), 1432-1447 is available at https://doi.org/10.1002/asi.24493 |
Appears in Collections: | Journal/Magazine Article |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
asi.24493.pdf | 2.47 MB | Adobe PDF | View/Open |
Page views
23
Last Week
0
0
Last month
Citations as of Jun 4, 2023
Downloads
7
Citations as of Jun 4, 2023
SCOPUSTM
Citations
9
Citations as of Jun 2, 2023
WEB OF SCIENCETM
Citations
4
Citations as of Jun 1, 2023

Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.