Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/91131
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Industrial and Systems Engineering-
dc.creatorTseng, KK-
dc.creatorWang, C-
dc.creatorHuang, YF-
dc.creatorChen, GR-
dc.creatorYung, KL-
dc.creatorIp, WH-
dc.date.accessioned2021-09-09T03:39:59Z-
dc.date.available2021-09-09T03:39:59Z-
dc.identifier.urihttp://hdl.handle.net/10397/91131-
dc.language.isoenen_US
dc.publisherMDPI AGen_US
dc.rights© 2021 by the authors. Licensee MDPI, Basel, Switzerland.en_US
dc.rightsThis article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).en_US
dc.rightsThe following publication Tseng, K.-K.; Wang, C.; Huang, Y.-F.; Chen, G.-R.; Yung, K.-L.; Ip, W.-H. Cross-Domain Transfer Learning for PCG Diagnosis Algorithm. Biosensors 2021, 11, 127 is available at https://doi.org/10.3390/bios11040127en_US
dc.subjectTransfer learningen_US
dc.subjectPhonocardiogramen_US
dc.subjectBiosignal diagnosisen_US
dc.titleCross-domain transfer learning for PCG diagnosis algorithmen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume11-
dc.identifier.issue4-
dc.identifier.doi10.3390/bios11040127-
dcterms.abstractCardiechema is a way to reflect cardiovascular disease where the doctor uses a stethoscope to help determine the heart condition with a sound map. In this paper, phonocardiogram (PCG) is used as a diagnostic signal, and a deep learning diagnostic framework is proposed. By improving the architecture and modules, a new transfer learning and boosting architecture is mainly employed. In addition, a segmentation method is designed to improve on the existing signal segmentation methods, such as R wave to R wave interval segmentation and fixed segmentation. For the evaluation, the final diagnostic architecture achieved a sustainable performance with a public PCG database.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationBiosensors, Apr. 2021, v. 11, no. 4, 127-
dcterms.isPartOfBiosensors-
dcterms.issued2021-04-
dc.identifier.isiWOS:000642771400001-
dc.identifier.pmid33923928-
dc.identifier.eissn2079-6374-
dc.identifier.artn127-
dc.description.validate202109 bchy-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOSen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Yung_Cross-domain_transfer_learning.pdf1.46 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

144
Last Week
3
Last month
Citations as of Nov 9, 2025

Downloads

68
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

22
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

15
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.