Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/91070
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematics-
dc.creatorJin, BT-
dc.creatorZhou, Z-
dc.date.accessioned2021-09-09T03:39:26Z-
dc.date.available2021-09-09T03:39:26Z-
dc.identifier.issn0266-5611-
dc.identifier.urihttp://hdl.handle.net/10397/91070-
dc.language.isoenen_US
dc.publisherInstitute of Physics Publishing Ltd.en_US
dc.rights© 2020 The Author(s). Published by IOP Publishing Ltd Printed in the UKen_US
dc.rightsOriginal content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. (https://creativecommons.org/licenses/by/4.0/) Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.en_US
dc.rightsThe following publication Bangti Jin and Zhi Zhou (2020 Dec). An inverse potential problem for subdiffusion: stability and reconstruction. Inverse Problems, 37(1), 015006 is available at https://doi.org/10.1088/1361-6420/abb61een_US
dc.subjectInverse potential problemen_US
dc.subjectSubdiffusionen_US
dc.subjectStabilityen_US
dc.subjectNumerical reconstructionen_US
dc.titleAn inverse potential problem for subdiffusion : stability and reconstructionen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume37-
dc.identifier.issue1-
dc.identifier.doi10.1088/1361-6420/abb61e-
dcterms.abstractIn this work, we study the inverse problem of recovering a potential coefficient in the subdiffusion model, which involves a Djrbashian-Caputo derivative of order alpha is an element of (0, 1) in time, from the terminal data. We prove that the inverse problem is locally Lipschitz for small terminal time, under certain conditions on the initial data. This result extends the result in [6] for the standard parabolic case to the fractional case. The analysis relies on refined properties of two-parameter Mittag-Leffler functions, e.g., complete monotonicity and asymptotics. Further, we develop an efficient and easy-to-implement algorithm for numerically recovering the coefficient based on (preconditioned) fixed point iteration and Anderson acceleration. The efficiency and accuracy of the algorithm is illustrated with several numerical examples.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationInverse problems, Jan. 2021, v. 37, no. 1, 15006-
dcterms.isPartOfInverse problems-
dcterms.issued2021-01-
dc.identifier.isiWOS:000617152600001-
dc.identifier.eissn1361-6420-
dc.identifier.artn15006-
dc.description.validate202109 bchy-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOSen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Zhou_inverse_potential_problem.pdf1.69 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

77
Last Week
0
Last month
Citations as of Apr 14, 2025

Downloads

39
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

14
Citations as of Jun 21, 2024

WEB OF SCIENCETM
Citations

19
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.