Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/91044
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorChinese Mainland Affairs Officeen_US
dc.contributorDepartment of Biomedical Engineeringen_US
dc.creatorChen, Xen_US
dc.creatorFan, Yen_US
dc.creatorSun, Jen_US
dc.creatorZhang, Zen_US
dc.creatorXin, Yen_US
dc.creatorLi, Ken_US
dc.creatorTang, Ken_US
dc.creatorDu, Pen_US
dc.creatorLiu, Yen_US
dc.creatorWang, Gen_US
dc.creatorYang, Men_US
dc.creatorTan, Yen_US
dc.date.accessioned2021-09-09T03:38:28Z-
dc.date.available2021-09-09T03:38:28Z-
dc.identifier.urihttp://hdl.handle.net/10397/91044-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rights© 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.en_US
dc.rightsThe following publication Chen, X., Fan, Y., Sun, J., Zhang, Z., Xin, Y., Li, K., Tang, K., Du, P., Liu, Y., Wang, G., Yang, M., & Tan, Y. (2021). Nanoparticle-mediated specific elimination of soft cancer stem cells by targeting low cell stiffness. Acta Biomaterialia, 135, 493-505 is available at https://dx.doi.org/10.1016/j.actbio.2021.08.053.en_US
dc.rights© 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.subjectCellular stiffnessen_US
dc.subjectCancer stem cellen_US
dc.subjectCellular uptakeen_US
dc.subjectMechanomedicineen_US
dc.subjectNanoparticleen_US
dc.titleNanoparticle-mediated specific elimination of soft cancer stem cells by targeting low cell stiffnessen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage493en_US
dc.identifier.epage505en_US
dc.identifier.volume135en_US
dc.identifier.doi10.1016/j.actbio.2021.08.053en_US
dcterms.abstractAs the driving force of tumor progression, cancer stem cells (CSCs) hold much lower cellular stiffness than bulk tumor cells across many cancer types. However, it remains unclear whether low cell stiffness can be harnessed in nanoparticle-based therapeutics for CSC targeting. We report that breast CSCs exhibit much lower stiffness but considerably higher uptake of nitrogen-doped graphene quantum dots (N-GQDs) than bulk tumor cells. Softening/stiffening cells enhances/suppresses nanoparticle uptake through activating/inhibiting clathrin- and caveolae-mediated endocytosis, suggesting that low cell stiffness mediates the elevated uptake in soft CSCs that may lead to the specific elimination. Further, soft CSCs enhance drug release, cellular retention, and nuclear accumulation of drug-loaded N-GQDs by reducing intracellular pH and exocytosis. Remarkably, drug-loaded N-GQDs specifically eliminate soft CSCs both in vitro and in vivo, inhibit tumor but not animal growth, and reduce the tumorigenicity of xenograft cells. Our findings unveil a new mechanism by which low cellular stiffness can be harnessed in nanoparticle-based strategies for specific CSC elimination, opening a new paradigm of cancer mechanomedicine.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationActa Biomaterialia, Nov. 2021, v. 135, p. 493-505en_US
dcterms.isPartOfActa biomaterialiaen_US
dcterms.issued2021-11-
dc.identifier.eissn1742-7061en_US
dc.description.validate202109 bchyen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera1025-n01-
dc.identifier.SubFormID2450-
dc.description.fundingSourceRGCen_US
dc.description.fundingTextRGC: PolyU 252094/17E, C5011-19G, PolyU 15216917 and 15214619en_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Chen_Nanoparticle-Mediated_Specific_Elimination.pdfPre-Published version2.82 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

82
Last Week
0
Last month
Citations as of Apr 14, 2024

Downloads

29
Citations as of Apr 14, 2024

SCOPUSTM   
Citations

13
Citations as of Apr 19, 2024

WEB OF SCIENCETM
Citations

12
Citations as of Apr 18, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.