Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/90985
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorLiu, Len_US
dc.creatorSu, Wen_US
dc.creatorZhao, Xen_US
dc.date.accessioned2021-09-03T02:35:53Z-
dc.date.available2021-09-03T02:35:53Z-
dc.identifier.urihttp://hdl.handle.net/10397/90985-
dc.language.isoenen_US
dc.publisherInstitute of Mathematical Statisticsen_US
dc.rightsThis is an open access article under the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).en_US
dc.rightsThe following publication Li Liu. Wen Su. Xingqiu Zhao. "Bi-selection in the high-dimensional additive hazards regression model." Electron. J. Statist. 15 (1) 748 - 772, 2021 is available at https://doi.org/10.1214/21-EJS1799en_US
dc.subjectAdditive hazards modelen_US
dc.subjectComposite penaltyen_US
dc.subjectHigh dimensionen_US
dc.subjectLocal coordinate descent algorithmen_US
dc.subjectOracle propertyen_US
dc.titleBi-selection in the high-dimensional additive hazards regression modelen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage748en_US
dc.identifier.epage772en_US
dc.identifier.volume15en_US
dc.identifier.issue1en_US
dc.identifier.doi10.1214/21-EJS1799en_US
dcterms.abstractIn this article, we consider a class of regularized regression under the additive hazards model with censored survival data and propose a novel approach to achieve simultaneous group selection, variable selection, and parameter estimation for high-dimensional censored data, by combining the composite penalty and the pseudoscore. We develop a local coordinate descent (LCD) algorithm for efficient computation and subsequently establish the theoretical properties for the proposed selection methods. As a result, the selectors possess both group selection oracle property and variable selection oracle property, and thus enable us to simultaneously identify important groups and important variables within selected groups with high probability. Simulation studies demonstrate that the proposed method and LCD algorithm perform well. A real data example is provided for illustra-tion.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationElectronic journal of statistics, 2021, v. 15, no. 1, p. 748-772en_US
dcterms.isPartOfElectronic journal of statisticsen_US
dcterms.issued2021-
dc.identifier.scopus2-s2.0-85099826686-
dc.identifier.eissn1935-7524en_US
dc.description.validate202109 bcvcen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOS, a2342b-
dc.identifier.SubFormID47550-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
21-EJS1799.pdf670.82 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

112
Last Week
2
Last month
Citations as of Nov 9, 2025

Downloads

45
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

3
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

2
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.