Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/90701
| DC Field | Value | Language |
|---|---|---|
| dc.contributor | Department of Logistics and Maritime Studies | en_US |
| dc.creator | Chen, R | en_US |
| dc.creator | Yuan, J | en_US |
| dc.creator | Ng, CT | en_US |
| dc.creator | Cheng, TCE | en_US |
| dc.date.accessioned | 2021-08-20T02:04:33Z | - |
| dc.date.available | 2021-08-20T02:04:33Z | - |
| dc.identifier.issn | 0360-8352 | en_US |
| dc.identifier.uri | http://hdl.handle.net/10397/90701 | - |
| dc.language.iso | en | en_US |
| dc.publisher | Pergamon Press | en_US |
| dc.rights | © 2021 Elsevier Ltd. All rights reserved. | en_US |
| dc.rights | © 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/. | en_US |
| dc.rights | The following publication Chen, R., Yuan, J., Ng, C. T., & Cheng, T. C. E. (2021). Bicriteria scheduling to minimize total late work and maximum tardiness with preemption. Computers & Industrial Engineering, 159, 107525is available at https://doi.org/10.1016/j.cie.2021.107525.. | en_US |
| dc.subject | Bicriteria scheduling | en_US |
| dc.subject | Maximum tardiness | en_US |
| dc.subject | Preemption | en_US |
| dc.subject | Total late work | en_US |
| dc.title | Bicriteria scheduling to minimize total late work and maximum tardiness with preemption | en_US |
| dc.type | Journal/Magazine Article | en_US |
| dc.identifier.volume | 159 | en_US |
| dc.identifier.doi | 10.1016/j.cie.2021.107525 | en_US |
| dcterms.abstract | We consider single-machine bicriteria scheduling of n jobs with preemption to minimize the total late work and maximum tardiness. Given the earliest due date order of the jobs in advance, we present an O(n)-time algorithm for the hierarchical scheduling problem and an O(nlogn)-time algorithm for the constrained scheduling problem. For the Pareto-scheduling problem, when all the processing times and due dates are integral, we construct the trade-off curve in O(nlognP) time, where P is the total processing time of the jobs. | en_US |
| dcterms.accessRights | open access | en_US |
| dcterms.bibliographicCitation | Computers and industrial engineering, Sept. 2021, v. 159, 107525 | en_US |
| dcterms.isPartOf | Computers and industrial engineering | en_US |
| dcterms.issued | 2021-09 | - |
| dc.identifier.scopus | 2-s2.0-85109423871 | - |
| dc.identifier.eissn | 1879-0550 | en_US |
| dc.identifier.artn | 107525 | en_US |
| dc.description.validate | 202108 bcvc | en_US |
| dc.description.oa | Accepted Manuscript | en_US |
| dc.identifier.FolderNumber | a1007-n11 | - |
| dc.identifier.SubFormID | 2424 | - |
| dc.description.fundingSource | RGC | en_US |
| dc.description.fundingText | PolyU 152207/17E | en_US |
| dc.description.pubStatus | Published | en_US |
| dc.description.oaCategory | Green (AAM) | en_US |
| Appears in Collections: | Journal/Magazine Article | |
Page views
161
Last Week
0
0
Last month
Citations as of Apr 14, 2025
SCOPUSTM
Citations
10
Citations as of Sep 12, 2025
WEB OF SCIENCETM
Citations
9
Citations as of Oct 10, 2024
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.



