Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/90600
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorTang, Wen_US
dc.creatorXie, Jen_US
dc.creatorLin, Yen_US
dc.creatorTang, Nen_US
dc.date.accessioned2021-08-04T01:52:04Z-
dc.date.available2021-08-04T01:52:04Z-
dc.identifier.issn0735-0015en_US
dc.identifier.urihttp://hdl.handle.net/10397/90600-
dc.language.isoenen_US
dc.publisherTaylor & Francis Inc.en_US
dc.rights© 2021 American Statistical Associationen_US
dc.rightsThis is an Accepted Manuscript of an article published by Taylor & Francis in Journal of business and economic statistics on 21 Apr 2021 (Published online), available online: http://www.tandfonline.com/10.1080/07350015.2021.1899932.en_US
dc.subjectFalse discovery rateen_US
dc.subjectHigh dimensionalityen_US
dc.subjectQuantile correlationen_US
dc.subjectVariable selectionen_US
dc.titleQuantile correlation-based variable selectionen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage1081en_US
dc.identifier.epage1093en_US
dc.identifier.volumehttps://doi.org/10.1080/07350015.2021.1899932en_US
dc.identifier.issue3en_US
dc.identifier.doi10.1080/07350015.2021.1899932en_US
dcterms.abstractThis article is concerned with identifying important features in high-dimensional data analysis, especially when there are complex relationships among predictors. Without any specification of an actual model, we first introduce a multiple testing procedure based on the quantile correlation to select important predictors in high dimensionality. The quantile-correlation statistic is able to capture a wide range of dependence. A stepwise procedure is studied for further identifying important variables. Moreover, a sure independent screening based on the quantile correlation is developed in handling ultrahigh dimensional data. It is computationally efficient and easy to implement. We establish the theoretical properties under mild conditions. Numerical studies including simulation studies and real data analysis contain supporting evidence that the proposal performs reasonably well in practical settings.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of business and economic statistics, 2022, v. 40, no. 3, p. 1081-1093en_US
dcterms.isPartOfJournal of business and economic statisticsen_US
dcterms.issued2022-
dc.identifier.scopus2-s2.0-85104817778-
dc.identifier.eissn1537-2707en_US
dc.description.validate202108 bcvcen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera0989-n01-
dc.identifier.SubFormID2337-
dc.description.fundingSourceSelf-fundeden_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Tang_Quantile_Correlation-Based_Variable.pdfPre-Published version506.95 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

107
Last Week
4
Last month
Citations as of Apr 14, 2025

Downloads

77
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

5
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

3
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.