Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/90425
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorSchool of Hotel and Tourism Managementen_US
dc.creatorManosuthi, Nen_US
dc.creatorLee, JSen_US
dc.creatorHan, Hen_US
dc.date.accessioned2021-07-06T02:42:02Z-
dc.date.available2021-07-06T02:42:02Z-
dc.identifier.issn1054-8408en_US
dc.identifier.urihttp://hdl.handle.net/10397/90425-
dc.language.isoenen_US
dc.publisherRoutledge, Taylor & Francis Groupen_US
dc.rights© 2020 Informa UK Limited, trading as Taylor & Francis Groupen_US
dc.rightsThis is an Accepted Manuscript of an article published by Taylor & Francis in Journal of Travel & Tourism Marketing on 23 Jul 2020 (Published online), available online: http://www.tandfonline.com/10.1080/10548408.2020.1784364.en_US
dc.subjectBayes factor (BF)en_US
dc.subjectLatent growth curve modeling (LGCM)en_US
dc.subjectMeta-analysis structural equation modeling (MASEM)en_US
dc.subjectNorm activation model (NAM)en_US
dc.subjectTemporal effectsen_US
dc.subjectTheory of planned behavior (TPB)en_US
dc.subjectVolunteer tourismen_US
dc.titlePredicting the revisit intention of volunteer tourists using the merged model between the theory of planned behavior and norm activation modelen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage510en_US
dc.identifier.epage532en_US
dc.identifier.volume37en_US
dc.identifier.issue4en_US
dc.identifier.doi10.1080/10548408.2020.1784364en_US
dcterms.abstractDespite the importance of the theory of planned behavior (TPB) and norm activation model (NAM) in explicating revisit intention, predictions based on the merging of these theories remain sparse in the youth volunteer tourism segment. To understand revisit intention formation, a meta-analysis is performed to draw a macro conclusion using prosocial studies as a representative of volunteer tourism in investigating the predictive power of the aforementioned-merged theories. Subsequently, latent growth curve modeling is applied to extend the understanding of tourist type identification to volunteer tourism research. The introduction of NAM into TPB marginally adds value to predictive power.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of travel & tourism marketing, 2020, v. 37, no. 4, p. 510-532en_US
dcterms.isPartOfJournal of travel & tourism marketingen_US
dcterms.issued2020-
dc.identifier.scopus2-s2.0-85088475212-
dc.identifier.eissn1540-7306en_US
dc.description.validate202107 bcvcen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera0951-n03-
dc.identifier.SubFormID2195-
dc.description.fundingSourceSelf-fundeden_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
a0951-n03_2195_Volunteer Tourists.pdfPre-Published version1.24 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

117
Last Week
1
Last month
Citations as of Apr 14, 2025

Downloads

664
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

103
Citations as of Sep 12, 2025

WEB OF SCIENCETM
Citations

70
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.