Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/90389
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Chinese and Bilingual Studiesen_US
dc.creatorChersoni, Een_US
dc.creatorPannitto, Len_US
dc.creatorSantus, Een_US
dc.creatorLenci, Aen_US
dc.creatorHuang, CRen_US
dc.date.accessioned2021-06-28T07:25:46Z-
dc.date.available2021-06-28T07:25:46Z-
dc.identifier.urihttp://hdl.handle.net/10397/90389-
dc.language.isoenen_US
dc.rights© European Language Resources Association (ELRA), licensed under CC-BY-NC (https://creativecommons.org/licenses/by/4.0/).en_US
dc.rightsThe following publication Chersoni, E., Pannitto, L., Santus, E., Lenci, A., & Huang, C. R. (2020, May). Are Word Embeddings Really a Bad Fit for the Estimation of Thematic Fit?. In Proceedings of The 12th Language Resources and Evaluation Conference (pp. 5708-5713) is available at https://www.aclweb.org/anthology/2020.lrec-1.700en_US
dc.subjectSemanticsen_US
dc.subjectCognitive methodsen_US
dc.subjectStatistical and machine learning methodsen_US
dc.titleAre word embeddings really a bad fit for the estimation of thematic fit?en_US
dc.typeConference Paperen_US
dc.identifier.spage5708en_US
dc.identifier.epage5713en_US
dcterms.abstractWhile neural embeddings represent a popular choice for word representation in a wide variety of NLP tasks, their usage for thematic fit modeling has been limited, as they have been reported to lag behind syntax-based count models. In this paper, we propose a complete evaluation of count models and word embeddings on thematic fit estimation, by taking into account a larger number of parameters and verb roles and introducing also dependency-based embeddings in the comparison. Our results show a complex scenario, where a determinant factor for the performance seems to be the availability to the model of reliable syntactic information for building the distributional representations of the roles.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationProceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020), Marseille, France, May 2020, p. 5708-5713en_US
dcterms.issued2020-
dc.relation.ispartofbookProceedings of the 12th Language Resources and Evaluation Conferenceen_US
dc.relation.conferenceLanguage Resources and Evaluation Conferenceen_US
dc.description.validate202106 bcvcen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumbera0670-n19-
dc.description.pubStatusPublisheden_US
Appears in Collections:Conference Paper
Files in This Item:
File Description SizeFormat 
2020.lrec-1.700.pdf711.42 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

53
Citations as of Jul 3, 2022

Downloads

1
Citations as of Jul 3, 2022

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.