Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/90128
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Physicsen_US
dc.creatorWong, YLen_US
dc.creatorJia, Hen_US
dc.creatorJian, Aen_US
dc.creatorLei, Den_US
dc.creatorEl, Abed, AIen_US
dc.creatorZhang, Xen_US
dc.date.accessioned2021-05-18T08:21:08Z-
dc.date.available2021-05-18T08:21:08Z-
dc.identifier.issn2040-3364en_US
dc.identifier.urihttp://hdl.handle.net/10397/90128-
dc.language.isoenen_US
dc.publisherRoyal Society of Chemistryen_US
dc.rightsThis journal is © The Royal Society of Chemistry 2021en_US
dc.rightsThe following publication Wong, Y. L., Jia, H., Jian, A., Lei, D., El Abed, A. I., & Zhang, X. (2021). Enhancing plasmonic hot-carrier generation by strong coupling of multiple resonant modes [10.1039/D0NR07643K]. Nanoscale, 13(5), 2792-2800 is available at https://dx.doi.org/10.1039/D0NR07643K.en_US
dc.titleEnhancing plasmonic hot-carrier generation by strong coupling of multiple resonant modesen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage2792en_US
dc.identifier.epage2800en_US
dc.identifier.volume13en_US
dc.identifier.issue5en_US
dc.identifier.doi10.1039/d0nr07643ken_US
dcterms.abstractPlasmon-induced hot carriers have recently attracted considerable interest, but the energy efficiency in visible light is often low due to the short lifetime of hot carriers and the limited optical absorption of plasmonic architectures. To increase the generation of hot carriers, we propose to exert multiple plasmonic resonant modes and their strong coupling using a metal-dielectric-metal (MDM) nanocavity that comprises an Au nanohole array (AuNHA), a TiO2 thin film and an Au reflector. Unlike common MDM structures, in addition to the Fabry-Pérot mode in the dielectric layer, AuNHA as the top layer is special because it excites the localized surface plasmon resonance (LSPR) mode in the Au nanoholes and launches the gap surface plasmon polariton (GSPP) mode in the Au reflector surface. The spatial field overlapping of the three resonance modes enables strong mode coupling by optimizing the TiO2 thickness, which leads to notably enhanced average IPCE (∼1.5%) and broadband photocurrent (170 μA·cm-2). This MDM structure would be useful for photochemistry and photovoltaics using sunlight. This journal isen_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationNanoscale, 7 Feb. 2021, v. 13, no. 5, p. 2792-2800en_US
dcterms.isPartOfNanoscaleen_US
dcterms.issued2021-02-07-
dc.identifier.scopus2-s2.0-85101104671-
dc.identifier.pmid33491704-
dc.identifier.eissn2040-3372en_US
dc.description.validate202105 bchyen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera0653-n01-
dc.identifier.SubFormID732-
dc.description.fundingSourceRGCen_US
dc.description.fundingTextRGC 152184/15E, RGC 152127/17E, RGC 152126/18E, RGC 152219/19E, RGC 152156/20E, N_PolyU511/20en_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Enhancing plasmonic hot-carrier generation.pdfPre-Published version3.03 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

121
Last Week
0
Last month
Citations as of Apr 14, 2025

Downloads

126
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

19
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

19
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.