Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/90092
PIRA download icon_1.1View/Download Full Text
Title: Mathematical modeling of direct ethylene glycol fuel cells incorporating the effect of the competitive adsorption
Authors: Pan, Z 
Bi, Y 
An, L 
Issue Date: Jan-2019
Source: Applied thermal engineering, 25 Jan. 2019, p. 1115-1124
Abstract: In this work, a one-dimensional mathematical model for a direct ethylene glycol fuel cell using hydrogen peroxide as oxidant is developed. This model considers the ethylene glycol crossover and the competitive adsorption between ethylene glycol molecules and hydroxyl ions at reaction sites, in addition to mass/charge transport and electrochemical reactions. In addition, the complicated co-existence of the hydrogen peroxide reduction reaction, the hydrogen peroxide oxidation reaction, and the oxygen reduction reaction in the cathode is also considered in this model. The mathematical model under the consideration of the above-mentioned physicochemical processes exhibits a good agreement with experimental results. In addition, the effects of various operating and electrode structural parameters on the cell performance are examined, including concentrations of various species, the exchange current densities and the thicknesses of diffusion layer. The numerical results exhibit that the cell performance improves with the increasing concentrations of hydrogen peroxide and sulfuric acid. As for the ethylene glycol and hydroxyl ions, increasing the concentrations makes contribution to higher performance, while the cell performance experiences a degradation at a high current density region due to the remarkable ohmic loss. The model also shows that increasing both the anode and cathode exchange current densities leads to an improved cell performance, which indicates the significance of developing novel catalyst with superior catalytic activity. Moreover, the effect of the structural design parameters of the anode and cathode diffusion layer is also investigated, and the results show that increasing thickness of diffusion layers has a negative effect on the cell performance.
Keywords: Competitive adsorption
Direct ethylene glycol fuel cell
Fuel crossover
Hydrogen peroxide
Mass transport
Mathematical modeling
Publisher: Pergamon Press
Journal: Applied thermal engineering 
ISSN: 1359-4311
EISSN: 1873-5606
DOI: 10.1016/j.applthermaleng.2018.10.073
Rights: © 2018 Elsevier Ltd. All rights reserved.
© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
83-Final accepted manuscript.pdfPre-Published version2.5 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show full item record

Page views

75
Last Week
0
Last month
Citations as of Apr 14, 2025

Downloads

43
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

30
Citations as of Sep 12, 2025

WEB OF SCIENCETM
Citations

28
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.