Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/89935
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Electrical Engineeringen_US
dc.creatorMei, Yen_US
dc.creatorGu, Wen_US
dc.creatorChung, ECSen_US
dc.creatorLi, Fen_US
dc.creatorTang, Ken_US
dc.date.accessioned2021-05-13T08:32:49Z-
dc.date.available2021-05-13T08:32:49Z-
dc.identifier.issn0968-090Xen_US
dc.identifier.urihttp://hdl.handle.net/10397/89935-
dc.language.isoenen_US
dc.publisherPergamon Pressen_US
dc.rights© 2019 Elsevier Ltd. All rights reserved.en_US
dc.rights© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.rightsThe following publication Mei, Y., Gu, W., Chung, E. C. S., Li, F., & Tang, K. (2019). A Bayesian approach for estimating vehicle queue lengths at signalized intersections using probe vehicle data. Transportation Research Part C: Emerging Technologies, 109, 233-249 is available at https://doi.org/10.1016/j.trc.2019.10.006.en_US
dc.subjectBayesian approachen_US
dc.subjectExpectation maximum algorithmen_US
dc.subjectProbe vehiclesen_US
dc.subjectQueue length estimationen_US
dc.titleA Bayesian approach for estimating vehicle queue lengths at signalized intersections using probe vehicle dataen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage233en_US
dc.identifier.epage249en_US
dc.identifier.volume109en_US
dc.identifier.doi10.1016/j.trc.2019.10.006en_US
dcterms.abstractA novel Bayesian approach is proposed for estimating the maximum queue lengths of vehicles at signalized intersections using high-frequency trajectory data of probe vehicles. The queue length estimates are obtained from a distribution estimated over several neighboring cycles via a maximum a posteriori method. An expectation maximum algorithm is proposed for efficiently solving the estimation problem. Through a battery of simulation experiments and a real-world case study, the proposed approach is shown to produce more accurate and robust estimates than two benchmark estimation methods. Fairly good accuracy is achieved even when the probe vehicle penetration rate is 2%.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationTransportation research. Part C, Emerging technologies, Dec. 2019, v. 109, p. 233-249en_US
dcterms.isPartOfTransportation research. Part C, Emerging technologiesen_US
dcterms.issued2019-12-
dc.identifier.scopus2-s2.0-85074636459-
dc.description.validate202105 bcvcen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera0783-n09, a1261-
dc.identifier.SubFormID1708, 44386-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextRGC: General Research Funds 15217415,General Research Fund 15224317en_US
dc.description.fundingTextOthers: P0001008en_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Queue_Length_Estimation.pdfPre-Published version2.79 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

105
Last Week
0
Last month
Citations as of Apr 14, 2025

Downloads

103
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

43
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

31
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.