Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/89897
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineeringen_US
dc.creatorRen, Fen_US
dc.creatorHu, HBen_US
dc.creatorTang, Hen_US
dc.date.accessioned2021-05-13T08:32:29Z-
dc.date.available2021-05-13T08:32:29Z-
dc.identifier.issn1001-6058en_US
dc.identifier.urihttp://hdl.handle.net/10397/89897-
dc.descriptionSpecial Column on the International Symposium on High-Fidelity Computational Methods and Applications 2019 (Guest Editors Hui Xu, Wei Zhang)en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rights© China Ship Scientific Research Center 2020en_US
dc.rightsThis is a post-peer-review, pre-copyedit version of an article published in Journal of Hydrodynamics. The final authenticated version is available online at: https://doi.org/10.1007/s42241-020-0026-0.en_US
dc.subjectActive flow control (AFC)en_US
dc.subjectDeep reinforcement learning (DRL)en_US
dc.subjectGenetic programming (GP)en_US
dc.subjectMachine learningen_US
dc.titleActive flow control using machine learning : a brief reviewen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage247en_US
dc.identifier.epage253en_US
dc.identifier.volume32en_US
dc.identifier.issue2en_US
dc.identifier.doi10.1007/s42241-020-0026-0en_US
dcterms.abstractNowadays the rapidly developing artificial intelligence has become a key solution for problems of diverse disciplines, especially those involving big data. Successes in these areas also attract researchers from the community of fluid mechanics, especially in the field of active flow control (AFC). This article surveys recent successful applications of machine learning in AFC, highlights general ideas, and aims at offering a basic outline for those who are interested in this specific topic. In this short review, we focus on two methodologies, i.e., genetic programming (GP) and deep reinforcement learning (DRL), both having been proven effective, efficient, and robust in certain AFC problems, and outline some future prospects that might shed some light for relevant studies.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of hydrodynamics, Ser.B, Apr. 2020, v. 32, no. 2, p. 247-253en_US
dcterms.isPartOfJournal of hydrodynamics, Ser.Ben_US
dcterms.issued2020-04-
dc.identifier.scopus2-s2.0-85084365535-
dc.description.validate202105 bcvcen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera0773-n04, a1491-
dc.identifier.SubFormID1529, 45166-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextRGC: General Research Fund (Grant Nos. 15249316, 15214418)en_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
1529_REN_HU_TANG_JHDmanuscript.pdfPre-Published version1.92 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

113
Last Week
1
Last month
Citations as of Apr 14, 2025

Downloads

261
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

101
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

59
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.