Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/89882
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Electronic and Information Engineeringen_US
dc.creatorLiu, HCen_US
dc.creatorChen, Wen_US
dc.date.accessioned2021-05-13T08:31:59Z-
dc.date.available2021-05-13T08:31:59Z-
dc.identifier.issn0143-8166en_US
dc.identifier.urihttp://hdl.handle.net/10397/89882-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rights© 2020 Elsevier Ltd. All rights reserved.en_US
dc.rights© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.rightsThe following publication Liu, H.-C., & Chen, W. (2020). Optical ghost cryptography and steganography. Optics and Lasers in Engineering, 130, 106094 is available at https://dx.doi.org/10.1016/j.optlaseng.2020.106094.en_US
dc.subjectComputational ghost imagingen_US
dc.subjectGhost cryptographyen_US
dc.subjectGhost steganographyen_US
dc.subjectOptical data processingen_US
dc.subjectReconstruction techniquesen_US
dc.titleOptical ghost cryptography and steganographyen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume130en_US
dc.identifier.doi10.1016/j.optlaseng.2020.106094en_US
dcterms.abstractAs an indirect imaging technique, computational ghost imaging (GI) obtains the object information by calculating the intensity correlation between a series of computer-generated matrices and the corresponding bucket signals, which thereby offers a potential application in optical encryption. Here, we propose a new steganography scheme, called ghost steganography, based on the principle of computational GI. In our ghost steganography scheme, the bucket intensity signals of a secret image are concealed into the ones of a non-secret image by applying a non-conspicuous number integration process. To further increase the security, we introduce RSA cryptography to encode the integrated bucket signals after the steganography process. Simulation and experiment results fully demonstrate the feasibility of our optical ghost cryptography and steganography scheme. Our work paves a way to the application of GI in steganography and also enriches the knowledge of symmetric and asymmetric optical cryptography.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationOptics and lasers in engineering, July 2020, v. 130, 106094en_US
dcterms.isPartOfOptics and lasers in engineeringen_US
dcterms.issued2020-07-
dc.identifier.scopus2-s2.0-85081690925-
dc.identifier.artn106094en_US
dc.description.validate202105 bchyen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera0739-n07-
dc.identifier.SubFormID1335-
dc.description.fundingSourceRGCen_US
dc.description.fundingText25201416en_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Liu_Optical_Ghost_Cryptography.pdfPre-Published version1.89 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

89
Last Week
0
Last month
Citations as of Apr 14, 2025

Downloads

102
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

25
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

17
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.