Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/89868
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Logistics and Maritime Studiesen_US
dc.creatorHuang, Den_US
dc.creatorChen, Xen_US
dc.creatorLiu, Zen_US
dc.creatorLyu, Cen_US
dc.creatorWang, Sen_US
dc.creatorChen, Xen_US
dc.date.accessioned2021-05-13T08:31:53Z-
dc.date.available2021-05-13T08:31:53Z-
dc.identifier.issn1366-5545en_US
dc.identifier.urihttp://hdl.handle.net/10397/89868-
dc.language.isoenen_US
dc.publisherPergamon Pressen_US
dc.rights© 2020 Elsevier Ltd. All rights reserved.en_US
dc.rights© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.rightsThe following publication Huang, D., Chen, X., Liu, Z., Lyu, C., Wang, S., & Chen, X. (2020). A static bike repositioning model in a hub-and-spoke network framework. Transportation Research Part E: Logistics and Transportation Review, 141, 102031 is available at https://dx.doi.org/10.1016/j.tre.2020.102031.en_US
dc.subjectBike repositioningen_US
dc.subjectDemand forecastingen_US
dc.subjectHub-and-spoke network frameworken_US
dc.subjectHub-first-route-seconden_US
dc.subjectRandom forestsen_US
dc.titleA static bike repositioning model in a hub-and-spoke network frameworken_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume141en_US
dc.identifier.doi10.1016/j.tre.2020.102031en_US
dcterms.abstractThis paper addresses a static bike repositioning problem by embedding a short-term demand forecasting process, the Random Forest (RF) model, to account for the demand dynamics in the daytime. To tackle the heterogeneous repositioning fleets, a novel repositioning operation strategy constructed on the hub-and-spoke network framework is proposed. The repositioning optimization model is formulated using mixed-integer programming. An artificial bee colony algorithm, integrated with a commercial solver, is applied to address computational complexity. Experimental results show that the RF can achieve a high forecasting accuracy, and the proposed repositioning strategy can efficiently decrease the users’ dissatisfaction.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationTransportation research. Part E, Logistics and transportation review, Sept. 2020, v. 141, 102031en_US
dcterms.isPartOfTransportation research. Part E, Logistics and transportation reviewen_US
dcterms.issued2020-09-
dc.identifier.scopus2-s2.0-85088984121-
dc.identifier.eissn1878-5794en_US
dc.identifier.artn102031en_US
dc.description.validate202105 bchyen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera0794-n06-
dc.identifier.SubFormID1657-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNSFC projectsen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Huang_Static_Bike_Repositioning.pdfPre-Published version2.54 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

72
Last Week
0
Last month
Citations as of Apr 14, 2025

Downloads

119
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

60
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

47
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.