Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/89832
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematics-
dc.creatorLi, X-
dc.creatorQiao, Z-
dc.creatorWang, AC-
dc.date.accessioned2021-05-13T08:31:37Z-
dc.date.available2021-05-13T08:31:37Z-
dc.identifier.issn0025-5718-
dc.identifier.urihttp://hdl.handle.net/10397/89832-
dc.language.isoenen_US
dc.publisherAmerican Mathematical Societyen_US
dc.rights© Copyright 2020 American Mathematical Societyen_US
dc.rightsFirst published in Mathematics of computation in vol. 90, no. 327, 2021, published by the American Mathematical Society.en_US
dc.subjectConvergence analysisen_US
dc.subjectHigher order consistency expansion.en_US
dc.subjectNonlocal Cahn—Hilliard equationen_US
dc.subjectStabilized linear schemeen_US
dc.titleConvergence analysis for a stabilized linear semi-implicit numerical scheme for the nonlocal Cahn-Hilliard equationen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage171-
dc.identifier.epage188-
dc.identifier.volume90-
dc.identifier.issue327-
dc.identifier.doi10.1090/mcom/3578-
dcterms.abstractIn this paper, we provide a detailed convergence analysis for a first order stabilized linear semi-implicit numerical scheme for the nonlocal Cahn— Hilliard equation, which follows from consistency and stability estimates for the numerical error function. Due to the complicated form of the nonlinear term, we adopt the discrete H-1 norm for the error function to establish the convergence result. In addition, the energy stability obtained by Du et al., [J. Comput. Phys. 363 (2018), pp. 39—54] requires an assumption on the uniform bound of the numerical solution, and such a bound is figured out in this paper by conducting the higher order consistency analysis. Taking the view that the numerical solution is indeed the exact solution with a perturbation, the error function is bounded uniformly under a loose constraint of the time step size, which then leads to the uniform maximum-norm bound of the numerical solution.-
dcterms.accessRightsopen access-
dcterms.bibliographicCitationMathematics of computation, 2021, v. 90, no. 327, p. 171-188-
dcterms.isPartOfMathematics of computation-
dcterms.issued2021-
dc.identifier.scopus2-s2.0-85100116339-
dc.identifier.eissn1088-6842-
dc.description.validate202105 bchy-
dc.description.oaAccepted Manuscript-
dc.identifier.FolderNumbera0735-n07-
dc.identifier.SubFormID1243-
dc.description.fundingSourceRGC-
dc.description.fundingText15325816, 15300417-
dc.description.pubStatusPublished-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
a0735-n07_1243.pdfPre-Published version955.51 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

98
Last Week
0
Last month
Citations as of Apr 14, 2025

Downloads

130
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

65
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

46
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.