Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/89814
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Electrical Engineeringen_US
dc.creatorZhang, Len_US
dc.creatorGu, Wen_US
dc.creatorFu, Len_US
dc.creatorMei, Yen_US
dc.creatorHu, Yen_US
dc.date.accessioned2021-05-13T08:31:29Z-
dc.date.available2021-05-13T08:31:29Z-
dc.identifier.issn1366-5545en_US
dc.identifier.urihttp://hdl.handle.net/10397/89814-
dc.language.isoenen_US
dc.publisherPergamon Pressen_US
dc.rights© 2021 Elsevier Ltd. All rights reserved.en_US
dc.rights© 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.rightsThe following publication Zhang, L., Gu, W., Fu, L., Mei, Y., & Hu, Y. (2021). A two-stage heuristic approach for fleet management optimization under time-varying demand. Transportation Research Part E: Logistics and Transportation Review, 147, 102268 is available at https://dx.doi.org/10.1016/j.tre.2021.102268.en_US
dc.subjectContinuous-time approximationen_US
dc.subjectFirst-order conditionen_US
dc.subjectTime-varying demanden_US
dc.subjectTwo-stage optimizationen_US
dc.subjectVehicle fleet managementen_US
dc.titleA two-stage heuristic approach for fleet management optimization under time-varying demanden_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume147en_US
dc.identifier.doi10.1016/j.tre.2021.102268en_US
dcterms.abstractAn efficient two-stage heuristic approach is developed for solving the fleet management problem under time-varying demand. Stage 1 of the approach optimizes the vehicles’ utilization schedule. Continuous-time approximation is employed to yield a set of near-optimality conditions that can greatly reduce the solution space of this stage. Stage 2 then optimizes the vehicle purchase and retirement schedules. Numerical experiments showed that our approach outperformed a number of previous methods and commercial solvers by large margins in terms of solution quality, computational efficiency, or both.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationTransportation research. Part E, Logistics and transportation review, Mar. 2021, v. 147, 102268en_US
dcterms.isPartOfTransportation research. Part E, Logistics and transportation reviewen_US
dcterms.issued2021-03-
dc.identifier.scopus2-s2.0-85101151118-
dc.identifier.eissn1878-5794en_US
dc.identifier.artn102268en_US
dc.description.validate202105 bchyen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera0783-n13-
dc.identifier.SubFormID1714-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextRGC: General Research Funds 15280116,General Research Funds 15224818en_US
dc.description.fundingTextOthers: P0001008en_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Zhang_Two-Stage_Heuristic_Approach.pdfPre-Published version1.6 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

124
Last Week
5
Last month
Citations as of Dec 21, 2025

Downloads

171
Citations as of Dec 21, 2025

SCOPUSTM   
Citations

8
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

8
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.