Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/89559
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Building Services Engineeringen_US
dc.creatorMui, KWen_US
dc.creatorTsang, TWen_US
dc.creatorWong, LTen_US
dc.date.accessioned2021-04-09T08:51:22Z-
dc.date.available2021-04-09T08:51:22Z-
dc.identifier.urihttp://hdl.handle.net/10397/89559-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rights© 2019 Elsevier Ltd. All rights reserved.en_US
dc.rights© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.rightsThe following publication Mui, K. W., Tsang, T. W., & Wong, L. T. (2020). Bayesian updates for indoor thermal comfort models. Journal of Building Engineering, 29, 101117 is available at https://dx.doi.org/10.1016/j.jobe.2019.101117.en_US
dc.subjectAcceptanceen_US
dc.subjectBayesian updatingen_US
dc.subjectPredictionen_US
dc.subjectThermal comforten_US
dc.titleBayesian updates for indoor thermal comfort modelsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume29en_US
dc.identifier.doi10.1016/j.jobe.2019.101117en_US
dcterms.abstractAchieving thermal comfort through sustainable indoor design is an increasing concern. Thermal comfort modelling is crucial for achieving building energy saving. This study reviews and categorizes major developments and trends in the field of thermal comfort research in recent years. Discrepancies between actual and predicted results of thermal sensation and thermal satisfaction suggests a performance gap in Fanger's model. Based on the current research gaps identified, a practical solution is proposed to improve the reliability of thermal comfort predictions. Two Bayesian updating protocols, namely individual updating and global updating, are put forward and the use of Bayesian approach to systemically update current thermal comfort beliefs with openly available field data is demonstrated. Besides being a practical tool for modelling thermal comfort using the best information available (i.e. existing models and field survey data), the proposed Bayesian updating provides an achievable solution to the present challenges in establishing a reliable thermal comfort prediction model.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of building engineering, May 2020, v. 29, 101117en_US
dcterms.isPartOfJournal of building engineeringen_US
dcterms.issued2020-05-
dc.identifier.scopus2-s2.0-85076629560-
dc.identifier.eissn2352-7102en_US
dc.identifier.artn101117en_US
dc.description.validate202104 bcrcen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera0665-n05-
dc.identifier.SubFormID844-
dc.description.fundingSourceRGCen_US
dc.description.fundingTextPolyU 152088/17E, B-Q59Ven_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Mui_Bayesian_Updates_Indoor.pdfPre-Published version1.59 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

104
Last Week
0
Last month
Citations as of Apr 14, 2025

Downloads

101
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

39
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

26
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.