Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/89523
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Building Services Engineering-
dc.creatorLu, Yen_US
dc.creatorHuang, Xen_US
dc.creatorHu, Len_US
dc.creatorFernandez-Pello, Cen_US
dc.date.accessioned2021-04-09T08:50:21Z-
dc.date.available2021-04-09T08:50:21Z-
dc.identifier.issn0015-2684en_US
dc.identifier.urihttp://hdl.handle.net/10397/89523-
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.rights© 2018 Springer Science+Business Media, LLC, part of Springer Nature.en_US
dc.rightsThis is a post-peer-review, pre-copyedit version of an article published in Fire Technology. The final authenticated version is available online at: https://doi.org/10.1007/s10694-018-0785-0.en_US
dc.subjectCopper coreen_US
dc.subjectElectrical wireen_US
dc.subjectFroude numberen_US
dc.subjectHorizontal concurrent flowen_US
dc.titleConcurrent flame spread and blow-off over horizontal thin electrical wiresen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage193en_US
dc.identifier.epage209en_US
dc.identifier.volume55en_US
dc.identifier.issue1en_US
dc.identifier.doi10.1007/s10694-018-0785-0en_US
dcterms.abstractElectrical wires with the flammable polymer insulation and the metal core are responsible for many fire accidents in buildings, nuclear power plants, aircraft, and spacecraft. For the first time, this work studies the horizontal flame spread and blow off under the concurrent airflows over the thin copper-core wires. Four wires of about 1-mm diameter with different insulation thicknesses and core diameters are tested in a horizontal wind tunnel. Results show that as the concurrent airflow velocity increases, the flame spread rate first quickly increases to a maximum value, and then slightly decreases until blow-off at about 2 m/s. Heat transfer analysis shows that the preheating from flame and core have different dependences on the airflow. The flame spread is slower for a larger copper core diameter because the heat-sink effect of the core is highlighted by increasing the thermal inertia. We found a critical Froude number of 3.6 which helps determine the critical concurrent airflow velocity when the fastest flame spread is achieved. This study not only provides valuable information about the worst scenario of wire fires but also advances the fundamental understanding of the concurrent flame spread mechanism over thin fuels.-
dcterms.accessRightsopen access-
dcterms.bibliographicCitationFire technology, 15 Jan. 2019, v. 55, no. 1, p. 193-209en_US
dcterms.isPartOfFire technologyen_US
dcterms.issued2019-01-15-
dc.identifier.scopus2-s2.0-85055718900-
dc.description.validate202104 bcvc-
dc.description.oaAccepted Manuscript-
dc.identifier.FolderNumbera0685-n05-
dc.identifier.SubFormID990-
dc.description.fundingSourceSelf-funded-
dc.description.pubStatusPublished-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
36_FT_2019_concurrent_wire_fire.pdfPre-Published version1.49 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

78
Last Week
0
Last month
Citations as of Apr 14, 2025

Downloads

62
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

36
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

25
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.