Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/89360
DC Field | Value | Language |
---|---|---|
dc.contributor | Department of Applied Mathematics | en_US |
dc.creator | Cai, W | en_US |
dc.creator | Li, B | en_US |
dc.creator | Lin, Y | en_US |
dc.creator | Sun, W | en_US |
dc.date.accessioned | 2021-03-18T03:04:41Z | - |
dc.date.available | 2021-03-18T03:04:41Z | - |
dc.identifier.issn | 0029-599X | en_US |
dc.identifier.uri | http://hdl.handle.net/10397/89360 | - |
dc.language.iso | en | en_US |
dc.publisher | Springer | en_US |
dc.rights | © Springer-Verlag GmbH Germany, part of Springer Nature 2019 | en_US |
dc.rights | This is a post-peer-review, pre-copyedit version of an article published in Numerische Mathematik. The final authenticated version is available online at: http://dx.doi.org/10.1007/s00211-019-01030-0 | en_US |
dc.title | Analysis of fully discrete FEM for miscible displacement in porous media with Bear–Scheidegger diffusion tensor | en_US |
dc.type | Journal/Magazine Article | en_US |
dc.identifier.spage | 1009 | en_US |
dc.identifier.epage | 1042 | en_US |
dc.identifier.volume | 141 | en_US |
dc.identifier.issue | 4 | en_US |
dc.identifier.doi | 10.1007/s00211-019-01030-0 | en_US |
dcterms.abstract | Fully discrete Galerkin finite element methods are studied for the equations of miscible displacement in porous media with the commonly-used Bear–Scheidegger diffusion–dispersion tensor: D(u)=γdmI+|u|(αTI+(αL-αT)u⊗u|u|2).Previous works on optimal-order L ∞ (0 , T; L 2 ) -norm error estimate required the regularity assumption ∇ x ∂ t D(u(x, t)) ∈ L ∞ (0 , T; L ∞ (Ω)) , while the Bear–Scheidegger diffusion–dispersion tensor is only Lipschitz continuous even for a smooth velocity field u. In terms of the maximal L p -regularity of fully discrete finite element solutions of parabolic equations, optimal error estimate in L p (0 , T; L q ) -norm and almost optimal error estimate in L ∞ (0 , T; L q ) -norm are established under the assumption of D(u) being Lipschitz continuous with respect to u. | en_US |
dcterms.accessRights | open access | en_US |
dcterms.bibliographicCitation | Numerische mathematik, Apr. 2019, v. 141, no. 4, p. 1009-1042 | en_US |
dcterms.isPartOf | Numerische mathematik | en_US |
dcterms.issued | 2019-04 | - |
dc.identifier.scopus | 2-s2.0-85062631179 | - |
dc.identifier.eissn | 0945-3245 | en_US |
dc.description.validate | 202103 bcvc | en_US |
dc.description.oa | Accepted Manuscript | en_US |
dc.identifier.FolderNumber | a0602-n08 | - |
dc.identifier.SubFormID | 553 | - |
dc.description.fundingSource | RGC | en_US |
dc.description.fundingText | 15301818 | en_US |
dc.description.pubStatus | Published | en_US |
dc.description.oaCategory | Green (AAM) | en_US |
Appears in Collections: | Journal/Magazine Article |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
a0602-n08_revision-2.pdf | Pre-Published version | 529.66 kB | Adobe PDF | View/Open |
Page views
107
Last Week
0
0
Last month
Citations as of Apr 14, 2025
Downloads
24
Citations as of Apr 14, 2025
SCOPUSTM
Citations
7
Citations as of May 8, 2025
WEB OF SCIENCETM
Citations
7
Citations as of Oct 10, 2024

Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.