Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/89293
DC Field | Value | Language |
---|---|---|
dc.contributor | Department of Mechanical Engineering | en_US |
dc.creator | Li, K | en_US |
dc.creator | Lin, D | en_US |
dc.creator | Huang, H | en_US |
dc.creator | Liu, D | en_US |
dc.creator | Li, B | en_US |
dc.creator | Shi, SQ | en_US |
dc.creator | Kang, F | en_US |
dc.creator | Zhang, TY | en_US |
dc.creator | Zhou, L | en_US |
dc.date.accessioned | 2021-03-05T07:39:24Z | - |
dc.date.available | 2021-03-05T07:39:24Z | - |
dc.identifier.issn | 2211-2855 | en_US |
dc.identifier.uri | http://hdl.handle.net/10397/89293 | - |
dc.language.iso | en | en_US |
dc.publisher | Elsevier | en_US |
dc.subject | Interfacial kinetics | en_US |
dc.subject | Lithiation | en_US |
dc.subject | Phase transitions | en_US |
dc.subject | Raman spectroscopy | en_US |
dc.subject | Supersaturated solid solution phase | en_US |
dc.subject | Temperature dependence | en_US |
dc.title | Interfacial kinetics induced phase separation enhancing low-temperature performance of lithium-ion batteries | en_US |
dc.type | Journal/Magazine Article | en_US |
dc.identifier.volume | 75 | en_US |
dc.identifier.doi | 10.1016/j.nanoen.2020.104977 | en_US |
dcterms.abstract | Understanding the temperature dependence of phase transitions occurred in electrode materials is crucial for improving the low-temperature performance of Li-ion batteries. In this work, we find an unusual temperature dependence in the phase transition of TiO2 nanoparticles on dynamic Li+ intercalation, with a decrease in temperature resulting in the formation of a supersaturated solid solution phase. Kinetic analyses reveal that Li redistribution is facilitated at high temperature while limited at low temperature. This difference manifests as a thermodynamically-controlled phase separation at high temperature and a kinetically-controlled formation of a supersaturated solid solution phase at low temperature. Facilitating the phase separation by enhancing the interfacial kinetics proves effective to improve the low-temperature performance. This study provides a comprehensive and in-depth understanding of the temperature dependence of the lithiation-induced phase transition, which has important implications for the development of the next generation of all-climate rechargeable batteries. | en_US |
dcterms.accessRights | embargoed access | en_US |
dcterms.bibliographicCitation | Nano energy, Sept. 2020, v. 75, 104977 | en_US |
dcterms.isPartOf | Nano energy | en_US |
dcterms.issued | 2020-09 | - |
dc.identifier.scopus | 2-s2.0-85087282315 | - |
dc.identifier.eissn | 2211-3282 | en_US |
dc.identifier.artn | 104977 | en_US |
dc.description.validate | 202103 bcvc | en_US |
dc.description.oa | Not applicable | en_US |
dc.identifier.FolderNumber | a0593-n01 | - |
dc.identifier.SubFormID | 403 | - |
dc.description.fundingSource | RGC | en_US |
dc.description.fundingText | PolyU 152107/18E | en_US |
dc.description.pubStatus | Published | en_US |
dc.date.embargo | 2022-09-30 | en_US |
Appears in Collections: | Journal/Magazine Article |
Page views
33
Citations as of Jul 3, 2022
SCOPUSTM
Citations
9
Citations as of Jun 30, 2022
WEB OF SCIENCETM
Citations
6
Citations as of Jun 30, 2022

Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.