Please use this identifier to cite or link to this item:
PIRA download icon_1.1View/Download Full Text
Title: Online and offline rotary regression analysis of torque estimator for switched reluctance motor drives
Authors: Xue, X
Cheng, KWE 
Ho, SL 
Issue Date: Dec-2007
Source: IEEE transactions on energy conversion, Dec. 2007, v. 22, no. 4, p. 810-818
Abstract: A new torque estimator for switched reluctance motor (SRM) drives based on 2-D rotary regression analysis is presented in this paper. The proposed torque estimator is composed of a bicubic regressive polynomial as a function of rotor position and input current. The regressive coefficients can be computed offline or online from the torque characteristics acquired either experimentally or from numerical computation. Furthermore, a torque estimation method by taking mutual coupling into consideration is proposed. It can be seen that the estimated and experimentally obtained self-coupling and mutual-coupling torque characteristics are in good agreement with each other. In addition, the dynamic torque waveforms with and without the mutual coupling, estimated by the proposed estimator, are found to be virtually the same as those obtained from the bicubic spline interpolation for SRM drives with single-pulse voltage, hysteresis current chopping, as well as with voltage pulse width modulation control. The success of all the case studies being reported is a good validation of the usefulness and accuracy of the proposed real-time torque estimator that, as described in this paper, can be used to quickly estimate the instantaneous output torque of SRM drives.
Keywords: Mutual coupling
Regression analysis
Switched reluctance motor (SRM)
Torque estimator
Publisher: Institute of Electrical and Electronics Engineers
Journal: IEEE transactions on energy conversion 
ISSN: 0885-8969
EISSN: 1558-0059
DOI: 10.1109/TEC.2007.895862
Rights: © 2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
rotary-regression_07.pdf287.23 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
View full-text via PolyU eLinks SFX Query
Show full item record

Page views

Last Week
Last month
Citations as of Jun 4, 2023


Citations as of Jun 4, 2023


Last Week
Last month
Citations as of Jun 1, 2023


Last Week
Last month
Citations as of Jun 1, 2023

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.