Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/88728
PIRA download icon_1.1View/Download Full Text
Title: Corrigendum to “A machine-learning approach to predicting and understanding the properties of amorphous metallic alloys” [Mat. Des., Volume 187 (2020), 108378]
Authors: Xiong, J 
Shi, SQ 
Zhang, TY
Issue Date: Jun-2020
Source: Materials and design, June 2020, v. 191, 108651, p. 1-1
Publisher: Elsevier
Journal: Materials and design 
ISSN: 0264-1275
EISSN: 1873-4197
DOI: 10.1016/j.matdes.2020.108651
Rights: © 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
The following publication Xiong, J., Shi, S. Q., & Zhang, T. Y. (2020). Corrigendum to “A machine-learning approach to predicting and understanding the properties of amorphous metallic alloys” [Mat. Des., Volume 187 (2020), 108378]. Materials and Design, 191, 108651, 1 is available at https://dx.doi.org/10.1016/j.matdes.2020.108651
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
Xiong_Machine-Learning_Approach_Predicting.pdf213.25 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show full item record

Page views

90
Last Week
0
Last month
Citations as of Apr 14, 2025

Downloads

49
Citations as of Apr 14, 2025

WEB OF SCIENCETM
Citations

1
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.