Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/88518
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorChinese Mainland Affairs Office-
dc.contributorDepartment of Mechanical Engineering-
dc.creatorLuo, YT-
dc.creatorLi, PQ-
dc.creatorLi, DT-
dc.creatorPeng, YG-
dc.creatorGeng, ZG-
dc.creatorXie, SH-
dc.creatorLi, Y-
dc.creatorAlu, A-
dc.creatorZhu, J-
dc.creatorZhu, XF-
dc.date.accessioned2020-11-27T05:50:02Z-
dc.date.available2020-11-27T05:50:02Z-
dc.identifier.urihttp://hdl.handle.net/10397/88518-
dc.language.isoenen_US
dc.publisherAmerican Association for the Advancement of Science (AAAS)en_US
dc.rightsCopyright © 2020 Ying-Tao Luo et al. Exclusive Licensee Science and Technology Review Publishing House. Distributed under a Creative Commons Attribution License (CC BY 4.0) (https://creativecommons.org/licenses/by/4.0/).en_US
dc.rightsThe following publication Ying-Tao Luo, Peng-Qi Li, Dong-Ting Li, Yu-Gui Peng, Zhi-Guo Geng, Shu-Huan Xie, Yong Li, Andrea Alù, Jie Zhu, Xue-Feng Zhu, "Probability-Density-Based Deep Learning Paradigm for the Fuzzy Design of Functional Metastructures", Research, vol. 2020, Article ID 8757403, 11 pages, 2020 is available at https://dx.doi.org/10.34133/2020/8757403en_US
dc.titleProbability-density-based deep learning paradigm for the fuzzy design of functional metastructuresen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage1-
dc.identifier.epage11-
dc.identifier.volume2020-
dc.identifier.doi10.34133/2020/8757403-
dcterms.abstractIn quantum mechanics, a norm-squared wave function can be interpreted as the probability density that describes the likelihood of a particle to be measured in a given position or momentum. This statistical property is at the core of the fuzzy structure of microcosmos. Recently, hybrid neural structures raised intense attention, resulting in various intelligent systems with far-reaching influence. Here, we propose a probability-density-based deep learning paradigm for the fuzzy design of functional metastructures. In contrast to other inverse design methods, our probability-density-based neural network can efficiently evaluate and accurately capture all plausible metastructures in a high-dimensional parameter space. Local maxima in probability density distribution correspond to the most likely candidates to meet the desired performances. We verify this universally adaptive approach in but not limited to acoustics by designing multiple metastructures for each targeted transmission spectrum, with experiments unequivocally demonstrating the effectiveness and generalization of the inverse design.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationResearch, 2020, v. 2020, 8757403, p. 1-11-
dcterms.isPartOfResearch-
dcterms.issued2020-
dc.identifier.isiWOS:000571471100001-
dc.identifier.scopus2-s2.0-85092941288-
dc.identifier.pmid33043297-
dc.identifier.eissn2639-5274-
dc.identifier.artn8757403-
dc.description.validate202011 bcrc-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOSen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Luo_Probability-Density-Based_Deep_Learning.pdf2.04 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

135
Last Week
3
Last month
Citations as of Nov 9, 2025

Downloads

33
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

40
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

38
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.