Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/88461
Title: | Gaussian mixture model and Gaussian supervector for image classification | Authors: | Jiang, Y Leung, HF |
Issue Date: | Nov-2018 | Source: | 2018 IEEE 23rd International Conference on Digital Signal Processing (DSP), Shanghai, China, China, 19-21 Nov. 2018, p. 1-5 | Abstract: | Gaussian Mixture Model (GMM) has been widely used in speech signal and image signal classification tasks. It can be directly used as a classifier, or used as the representation of speech or image signals. Another important usage of GMM is to serve as the Universal Background Model (UBM) to generate speech representations such as Gaussian Supervector (GSV) and i-vector. In this paper, we borrow GSV from speech signal classification studies and apply it as an image representation for image classification. GSV is calculated based on a Universal Background Model (UBM). Apart from employing the conventional GMM as the UBM to calculate GSV, we also propose the Equal-Variance GMM (EV-GMM), where all the variables in all the Gaussian mixture components share the same variance. Moreover, we derive the kernel version of EV-GMM, which generalizes EV-GMM by introducing a kernel. We then compare GSV to the raw image feature and other popular image representations such as Sparse Representation (SR) and Collaborative Representation (CR). Experiments are carried out on a handwritten digit recognition task, and classification results indicate that GSV can work very well and can be even better than other popular image representations. In addition, as the UBM, the proposed EV-GMM can work better than the conventional GMM. | Keywords: | Gaussian mixture model Equal-variance Gaussian mixture model Gaussian supervector Image classification |
Publisher: | Institute of Electrical and Electronics Engineers | DOI: | 10.1109/ICDSP.2018.8631558 | Rights: | © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The following publication Y. Jiang and H. F. Frank Leung, "Gaussian Mixture Model and Gaussian Supervector for Image Classification," 2018 IEEE 23rd International Conference on Digital Signal Processing (DSP), Shanghai, China, 2018, pp. 1-5 is available at https://dx.doi.org/10.1109/ICDSP.2018.8631558 |
Appears in Collections: | Conference Paper |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Jiang_Gaussian_Mixture_Model.pdf | Pre-Published version | 970.58 kB | Adobe PDF | View/Open |
Page views
41
Last Week
0
0
Last month
Citations as of Jun 4, 2023
Downloads
6
Citations as of Jun 4, 2023
SCOPUSTM
Citations
2
Citations as of Jun 8, 2023

Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.